
October 1987 Report No. STAN-CS-87-1188 ["_
Also Numbered KSL-87-61

AD-A 198 708 =,

]]_CFILE_m
Experiments with a Knowiedge-Based System

on a Multiprocessor J

TrC Russell N:|k:|noandMasafu,ni Minami

SELECTEIAUG0 4 1988#

' e#D --
Department of Computer Science

Sh;nford University

Hta.ford.CA 94305

__ 2'_

ULwt_butior.Unlimited _'_

R_

)\

Knowledge Systems Laboratory October 1987
Report No. KSL 87-61

Experiments with a Knowledge-Based System

on a Multiprocessor

Russell Nakano? and Masafumi Minami

KNOWLEDGE SYSTEMS LABORATORY (._i_o)

Computer Science Department

Stanford University -Accesion For
-- ---- _ JStanford, Ca!ifornia 94305 NTIS CRA&I

DTIC TAB Q
Ur:ar_o_mc ed []

?WORKSTATION SYSTEMS ENGINEERING J,,st,fic_t,_.

Digital Equipment Corporation D_"-BI'_....o...._ "' -Palo Alto, California 94301 ":, /

#'_,':._','i:bH,ty Cc_tes

! A.,,,; a_ld I or

,q-,Ji..... 1

Thiswork was supportedbyDARPA ContractF30602-85-C-0012,NASA
Ames ContractNCC 2-220-$1,BoeingContractW266875,and the
WorkstationSystemsEngineeringgroupofDigitalEquipmentCorporation.

1989004628-002

", _ Abs act !

This paper documents ts obtained md the lessons learned in the •
design, implementation, and execu_on of • shnulated real-time application on • simulated
parallel processor. Specifically, dur parallel program ran I00 times faster on • I00-

iprocessor multiprocessor compared to • l-processor m,dtiprocessof.

, The machine arc_2:ectme is • disuibuted.memory multiprocessor. The target
mach_ consists of 10 to 1000 processors, but because of simulator limitations, we ran
simulations of machines consisting of I to I00 processors. Each processor is a comnuter

, with its own local memory, executing an independent instruction stremn_ There L5no
global shared memory; all processes communicate by message passing. The target
progmnming environment, called Lamina, encourages • programming style tl_t sm_sses
per/ormance gains through problem decompos/fion, allowing many processors to be
brought to bear on a problem. The key is to dimibute the processing load over repficated
objects, and to ita:zease tMoughimt by building pipelined sequences of objects thathandle p

sta_ ofpr_,_m solving. _ _ _'_,r_ '. _'_

-- We"focused on • knowledse'.based application d_/simulates real-time

unders_xling of radar tracks,called _rlrac. This paper de•crib. • po_ion of the A/ra'ac
application implemented in Lam/n_and a set of experimFuts that we perfonn.ed. _

" with additional processors, and thereby attains • SlglI/fi_iJ_t level of speedup. 2)
C_ of ow concurrentprogram can be maintaineddespite a high degree of problem

O_mpo_onaddhlghlyoverloadedit_utdatacocditioos./ (l_) _

I
i

Ill

1989004628-003

t
au
O

'/'able of Contents

Table of Contents .. v
" List of Figures .. vi

List of Tables .. vii •
• I. Intn)duction... I

2. Definitions ... 2
3. Computationalmodel .. 3

3.1. Machinemodel , ... 3
3.2. Programmer model .. 4

4. Design principles... 5 t
4.1. Speedup ... 6

4.1.1. Pipelining .. 6
4.1.2. Replication.. 6

4.2. Correctness.. 7
4.2.1. Consistency ... 7
4.2.2. Mutual exclusion ... 9 ib

4.3. Dependence gravh programs ... 10
5. TheAimacproblem..14

5. I. AJrwacdataassociation asdependencegraph.................................... 17
5.2. Laminaimplementation... 2!

6. Experiment design .. 24
7. Result, ... 27 /

7.1. Speedup .. 27
7.2. Effects of tzplication.. 29
7.3. Less than perfect cerrecmess .. 31
7.4. Varying the input data set .. 32

8. Discussion ... 35
8. I. Decomposition and correctness .. 35 It

8. I. 1. Assigning fun_ons to objects ... 36
8.1.2. Why message ordermatters .. 36
8.1.3. Reports as values ratherthanobjects 37
8.1.4. Initialization ... 37

8.2. Otherissues .. 39
8.2.1.Load balance .. 39 It
8.2.2. Conclusionretraction.. 41

9. Summary.. 42
Acknowledgements ... 43
Refere,ces ... 43

t
tv

.... ' ' 'L_- _,_ " .V_"L_SL_,r_'_Ix _)_h32x%:x_'_'_2__ _L_?_

1989004628-004

List of Figures

IFigure I. Decomposing a problem w obtainpipeline speedup.............................. 6
Figure 2. Decomposing a problemto _ _plication spell, up......... :,:7
Figure 3. A dependence graphprogram for a sunpie numencaxcomputanon. tz
Figure 4. A dependence graphprogramfor the simple numericalcomputation......... 13
F_are 5. Definin'onof the"op"¢imizedsummation"subgraph............................. 14
Figure 6. Inputto Airu'ac.. 16
Fi.'- -_ 7. Grouping reports into segments in data association 17
Fi_ :e 8. Dependencegraphprogram represeniafionof Ainrac damassociation. 18
Figure 9. Decomposition of the "handle track" sub-problem.............................. 19
Figure 10. Decomposition of the "check fit" sub-problem.................................. 20
Figure 11. Objectsm_cturein _e dataassociation module.................................. 21
Figure 12. Comparisonof thenumberof active tracksin the many-aircraf_andone-

aircraft scenarios.. 27
Figure13. Confizmazionlazencyasaflmctionofthenumb_ofproceuors.............. 28
Figure14. Inactivationlazencyasa functionof thenumberof processors................ 29
Figure 15. Confirmation latency as a function of the number of radar _ manure's.. 30 @r_
Figure 16. Confinnar.ionla_ncy as a functionof thenumberof inputhandlers.......... 3
Figure 17. Correcmessploued as a function of the numberof processors for the one-

aL,craft andmany-ahcraft scenarios... 32
Figure 18. Continuation latency as a functionof thenumberof processors varies with

the input scenario .. 33
Figure 19. Inputworkload versus time profiles shown for tv,o possible input scenarios.

e.ee.,eoo.e.o.. o.*.........ie*..oo.eea.....oo.*a*., o..eeeleeeeeoeleeeeeololoeeeee* _

Figure 20. Creatingstaticobjects duringinitialization....................................... 38

@

] 989004628-005

List of Tables

JTable 1. Comsp,mdence of Lanfinaobjects with functions in the dependence 24graphprogram..

l
i
j
t

• 1
1
I

1989004628-006

!

1. Introduction i

This paper focuses on the problems confronting the programmerof a concurrent
• program that runs on a distributed memory multiprocessor. The primary objective of our

e_:periments is to obtain speedup from parallelism without compromising correctness.
Specifically, our parallelprogram ran 100 times faster on a 100-processor multiprocessor 81

' compared to a 1-processor multiprocessor. The goal of ttfis paper is to explain why we

Imade certaindesign choices and how those choices influence our result.

A major theme in our work is the tradeoff between speedup and correcmess. We
attempt to c,btainspeedup by decomposing our problem to allow many sub-problemsto be
solved concurrently. This requires deciding how to partition the data structures and
procedures for concurrent execution. We take care in decomposing our problem; to a frrst
approximation, more decomposition allows more concurrency aad therefore greater
speedup. At the same time. decomposition increases the interactions and dependencies
between the sub-problems and makes the task of obt;aininga correct solution moredifficult.

This paper focuses on the implementation of a knowledge-based expert system in a al
concurrentobject-orientedprogrammingparadigmcalledLamina[Delagi87a].Thetarget

Nisa distributed-memorymachineconsistingofI0toI000processors,butbecauseof
simulatorlimitations,oursimulationsexamineItoI00processors.Eachprocessorisa
computerwithaIocmmemory andanindependentinstructionstream.lThereisnoglobal
sharedmemoryofanykind.

Airtracis a knowledge-basedapplicationthatsimulate_ real-timeunderstandingof
radar tracks. This paper describes a portion of the Ainxac application implemented in ILamina and a set of experiments that we performed. We encoded and implemented the
knowledge from the domain of real-time radar track interpretation for execution on a
distributed-memory message-passing multiprocessor system. Oar goal was to achieve a
significant level of problem-solving speedup by techniques that exploited both the _q
characteristicsofoursimulatedparallelmachine,aswellastheparallelismavailabieinour

Mproblemdomain.

The remainderofthispaperisorganizedasfollows.Section2 introduces
defm_.:nsthatwe usethroughoutthepaper.Section3 describesthemodeloftheparallel
machinethatwe simulate,and themodelofcomputationfromtheviewpointofthe
programmer.Section4 outlinesa setofprinciplesthatwe followinourprogramming
effortinordertoshedlightonwhy we taketheapproachthatwe do.Section5 describes
thesignalunderstandingproblemthatourparallelprogramaddresses.Section6describes
thedesignofourexperiments,andSection7 present_theresults.Section8 discussesa

i numberofdesignissues,andSection9 summarizesthepaper.

lF.achprocessorisroughlycomparabletoa32.bitmicroprocessor-basedsystemequippedwitha
mulumskingkernelthatsupportsinterprncessorcommunicationandrestanableprocesses(asopposedto
resumableprocesses).Thehardwaresystemisassumedtosupporthigh-bandwidth,low-latencyinter.
processorcommunicmionsasdescribedinByrdet.al.['Byrd87].

1

1989004628-007

8

2. Definitions

cf Andrews and Schneider [Andrews 83], a sequentialUsing the definitions

prosram specifies sequential execution of a list of statements; its execution is called a
g

process. A concurrent program specifies two or more sequential programs that n_ay be
ex_ted concurrently asparallelprocesses.

Tm

We define Sn,m speedup as the ratio "_n' where Tk denotes the time for a given

task to be completed on a k-processo=mukiprocessor. Both Tm and Tn representthe same

concurrent program running on m-processor and n-processor rn,".tiprocessors,
respectively. When we compare an n-processor multiprocessor to a 1-processor
multiprocessor, we obtain a measure for Sn/1 speedup, which should be distinguished

from true speedup, defined as the ratio T-_n,where T* denotes the time for a given task to

completed by the best implementation passible on a uniprocessor. 2 In particular, T*
excludes overhead tasks (e.g. message-pa, sing, sync._onization, etc.) thatT 1 counts.

We define correctness to be the degree to which a concurrentprogram executing on
a k-processor multiprocessor obtains the same solution as a conventional uniprocessor-
based sequential program embodying the same knowledge as contained in the concurrent
program. We call the latter solution a reference solution. We use a serial version of our
system to generate a reference solution, to evaluate the correcmess of the parallel
implementation.3

MacLennan [lVlacLennan82] distinguishes between value-oriented and object-
orientedprogramming styles. A value has the following prope_ies: l• A value is read-only.

• A value is atemporal (i.e. timeless and unchanging).

l• A value exhibits referential u'ansparency,that is, there is never the danger of one
expression altering something used by another expression.

These propertiesmake values extremely attractive for concurrent programs. Values
are immutableand may be read by many processes, either directly or through "copies" of
values that ate equal; this facilitates the achievement of correctness as well as concurrency.
A well-known example of value-oriented programming is functional programming
[Henderson80]. Other examples of value-oriented programming in the realm of parallel
computing include systolic programs [Kung 82] and scalar dataflow programs [Arvind83,
Dennis 85], where the data flowing from processor to processor may be viewed as values

that represent abstractionsof various intermediate problem-solving stages.

2A 1.processormultiprocessorexecutesthe sameparallelprogramthatrunson a n-processor
multiprocessor.Inparticular,it createsprocessesthatcommunicateby sendingmessages,asopposedto
sharinga commoomemory.

3Unfommately,ourreferenceprogramis notavalidproducerofT*estimates,andwecannotuseit
to obtaintruespeedupestimates.Projectresourcelimitauonspreventedusfromdevelopinganoptimized

lprogramtoserveasa bestserialimplementat/on.

2

1989004628-008

Itscontrast, MacLennan defines objects in computer programming to have one or

more of the following p_perdes:
• An object may be created and destroyed.

0

•Anobjecthasstate.

• An objectmay bechanged.

• An objecttr.aybe shared.
|

Computerprogramsoftensimulatesomephysicalor logical situation,whereobjects
represent the entities in the simulated domain. For example, a record in an employee
database corresponds to an employee. An entry in a symbol table corresponds to a variable
in the source text of a program. Variables in most high-level programming languages
represent objects. Objects provide an abstraction of the state of physical or logical entities,
and reflect changes that those entities undergo during the sL'nulation. These properties
makeobjectspar_cularlyusefulandattractivetoaprogrammer.

Objectsina concurrentprogramintroducecomplications.Inparticular,many
parallelprocessesmay attempttocreate,destroy,change,orsharean object,thereby
causingpotentialproblems.Forinstance,oneprocessmay readanobject,performa
computation,andchangetheobject.Anotherprocessmay concur_nflyperformasimilar
sequenceofactionson thesameobject,leadingtothepossibilitythatoperationsmay
interleave,andrenderthestateoftheobjectinconsistent.Many solutionshavebeen
proposed,includingsemaphores,conditionalcriticalregions,andmonitors;allofthese
techniquesstrivetoachievecorrectnessandinvolvesomelossofconcurrency.

Ourprogrammingparadigm,Lamina,supportsavariationofmonitors,definedasa
collectionofpermanentvariables(we usetheterminstancevariables),usedtostorea
resource'sstate,andsomeprocedures,whichimplementa_t ofallowedoperationsonthe
resource[Andrews83]. Althoughmonitorsprovidemutualexclusion,concurrency
considerationsforceustoabandonmutualexclusionasthesoletechniquetoobtain
cortccmess.

We classify techniques for obtaining speedup in problem-solving into two !
categories: replication and pipelining. Replication is defined as the decomposition of a
problem or sub-problem into many independent or partially independent sub-problems that Emay be concurrently processed. Pipelining is defined as ".hedecomposition of a problem or
sub-problem into a sequence of operations that may be performed by succ, _sive stages of a
processingpipeline.Theoutputofonestageistheinputtothenextstage. I

3. Computationalmodel

3.I. Machine model 1

Our machine architecture,referred to as CARE [Delagi 8"/a],may be modeled as an _
asynchronousmessage-passing distributed syste;n with reliable datagram service 'p
[Tanenbaum 81]. After sending a message, a process may continue to execute (i.e.
message passing is asynchronous). Arrival orderof messages may differ from the order in
which they were sent (i.e, datagram as opposed to virtual circuit), The network guarantees
that no message is ever lost (i.e. reliable), although it does not guarantee when a message

i
i

3

1989004628-009

will arrive. Each processor within the distributed system is a computer that supports
;,_,a,,-,p,_-mee_P _,,_mmnmi_-sit;nn _nel _._tm'tA_le DFOCeS_S. I::.ach orocessor op_rales on its

o_s_;ons_'_;n_ronously with _.ct to otherpro_essors.

maintaining consistent state "In synchronous message passing, i_:".,e.
communicating processes is simplified because the sender blocks until the "_ _ is
received, giving unplicit synchronizationat the send and receive points. Fore •_,_"_i'__
receivermay correctly make inferences about the sender's programstate from _ _ __._r,:_
of the message it has _ceived, without the possibility that the sender_programco,. '-u: J _
execute, possibly negating a condkion that held at the time the origins/message w._ _.- '

In asynchronous message passing, t,hesender continues to _,_ecute after sending a
message. This has the advantage of introducing more concurrency, which holds the
promis: of additional speedup. Unfortunatciy, in its pure form, asynchronous message
passing allows the sender to get arbitrarilyfar ahead of the receiver. This means that the
contents of the message reflects the state of the sender at the time the message was sent,
which may not necessarily be true at the time the message is received. This consideration
makes themaintenance of consistent state across processes difficult, and is discussed more
fully in Secuon4.

3.2. Programmer model

Our programmingparadigm, Lamina, provides language constructs that allows us
to exploit the distributed memory machine architecture described earlier [Delagi 8_'_]. In
particular, we focused our programming efforts on the concurrent object-oriented pro-
gnunming model that Laminaprovides. As in otherobject-oriented pro_ systen_.,
objects encapsulate state information as instance variables. Instance variables may oe
accessed and manipulated only throughmethods. Methods are invoked by message-
passing. r

However, despite the _pparent similaritywith conventional object-oriented systems,
prong within Lamina has fundamentaldifferences:

• Concurrent processes may execute during both object creation and message 1sending.

• The timerequi,,edtocreateanobjectisvisibleto theprogrammer.

• The t.Cmerequ/redto send a message is visible to the programmer. !

• Messages may _ received in a different order fi'omwhich they were sent. 1N

These differences reflect the s:rongemphasis Laminaplaces on concurrency. While i
al/object-oriented systems encounter delays in object creation and message sending, these
delays are significant within the Lamina paradigm because of the other activities that may !
proceed concurrently durin 8 these periods. Subtle and not-so-subtle problems become
apparentwhen concurrentprocesses communicate, whether to send a message or to create a i
new object. For instance, a process might detect that a particular condition holds, and
respond by sending a message to another process. But because processes continue to I
execute during message sending, the condition may no longer hold when the message is
received. This example illustrates a situation where the recipient of the message cannot
correctly assume that because ,he sender responds to a particular condition by sencimg a
message, that the condition stLUholds when themessage is received.

4

h

Regardingmessageordering,partlyasaresuhofourexperimentation,versionsof
Lamina subsequent to me one w¢ u_u _,,,,,,,,,, - _ e'"o r J
that messages be handled by the receiver in the same orderthat they were sent [Delagi 87c].
Use of this feature imposes a performance penalty, which places a responsibility on the
j'rogrammer to determine that message ordering is uuly warranted. In the Airtrac Mapolication, we believed that ordering was necessary and imposed it through application
level routines that examined message sequence numbers (time tags) and queued messages

• forwhichallpredecessorshadnotalreadybeenhandled.

In 'Laraina,an object is a process. Following the definition of a process provided

.- I

' earlier, we makc no commitment to whemer a process has a unique virtual address space
associated with it. Each object has a top-level dispatch process that accepts incoming
messages and invokes the appropriate message handler, otherwise, if there is no available
message, the process blocks. Sending a message to an object corresponds to
asynchronous message-passing at the machine level. A method executes atomically. Since | I

each object has a single process, and oxdy that process has access to the internal state(instance variables), mutual exclusion is assured. An object and its methods effectively

mconstitute a non-nested monitor.

Our problem-solving approach has evolved from the blackboard model, where
nodes on the blackboard form the basic data objects, and knowledge sources consisting of an
rules are applied to transformnodes (i.e. objects), nd create new nodes ['Nilg6a, Nil 86b]. ,_
Bro_ n el. al. used concepts from the blackboard model to implement a signal-interpretation

Iapplication on the CARE multiprocessor simulator [Brown 86]. Lamina evolved from the
experiences from that effort. In addition, lessons learned in that earlier effort have been
incorporated into our work, including the use of replication and pipelining to gain
performance, and improving efficiency and correctness by er.forcing a degree of consis- |1

tency control overmany agents computing concurrently.

4. Design principles

Lamina represents a programming philosophy that relies on the concepts of
replication and pipelming to achieve speedup on parallel hardware. "ilhekey to successful
application of these principles relies on f'mding an appropriate problem decomposition that
exploits concurrent execution with minimal dependency between replicated or pipelined
processing elements.

I
The price of concurrency and speedup is the cost of maintaining consistency among .-_

objects. When writing a sequential program, a programmer automatically gains mutual '..::_
exclusion between read/write operations on data structures. This follows di_cdy from the
fact that a sequential pro_am has ordy a single process; a single process has sole control
over reads and writes to-a variable, for instance. This convenience vanishes when the _
programmer writes a concurrent program. Since a concurrent program has many 1+
concurrently executing processes, coordinating the activiues of the processes becomes a
significant task.

In this section, we develop the concept of a dependence graph program to provide a
framework in which tradeoffs between aherna_e problem decompositions may be
examined. Choosing a decomposition that admits high concurrency gives speedup, but it LJ
may do so with the expense of higher effort in maintaining consistency. We introduce ;_
dependence graph programs to make the tradeoffs more expl+cir.

5

] 989004628-01]

o

4.1. Speedup
Resea_'clwrshave debateo how much speedup is obutinabieon parallel hardware, on _

both theoretical andempirical grounds; Kruskal has surveyed ttus area [Kruskal85]. We •
takethe empirical approachbecause our goal is to te_t ideas aboutparallel problem solving
using mukiprocessor architectures. Our thinking is guided, however, by a number _f
principles describin_ how to decompose problems to obmm speedup.

4.1.1. Pipelining

Considera concurrentprogram consisting of three cooperating processes: _,eader,
Executor, and Printer. The Reader process obt',unsa line consisting of charactersfrom an
input source, sends it to the Executor process, and then repeats this Ioo_. The Executor
performs a similar function, receiving a line frorflthe Reader, pro_'¢ssingit in some way,
and sending it to the Printer. The Printerreceives lines from the Executor, and _rints out
the line. These processes cooperate to form a pipeline; see Figure I. _y using
asynchronous message passins, we obtain concurrent operation of the proc,,ss_s; for ,_°
instance, the Printer may be working on one line, while the Execator is working on ,_
another. This means that by assigning each process to a different processor, we can obtain
speedup, despite the fact that each line must be inputted, processed, md output
sequentially. By overlapping the operations we can achieve a higher throughput than is

possible with a single process performing all three rusks. ®

Figuret. Decomposing• problemm obtainpipelinespeedup.

Bydecomposing• probleminsequem_aistages,wecanotmmspeedupf_rompipeimmg.

4.1.2. Replication

Consider a varimon of Reader-Executor-PrimerproLlem. Suppose that we an_able ,_°
to achieve some overlap in the opera_.ions, but we discover that the Executor stage
consistently tal<eslonger than the other stages. Thi.ocauses the Printer to be conr.inualiy
starvedfor dam, while the Reader completes its task quickly and spends most of its time
idle. We can improve the overall throughput by replicating the function of the Exe,mtor
stage by creating many Executors. See Figure 2. By increasing the number of processes
per/orming a given function, we oo not reduce the time it takes a single Executor to __
perform its function, but we allow many lines to be processed concurrently, improving the
utilization of the Reader snd Printer processes, and boosting overall throughput. This
principle of replicating a stage applies equally well if the Reader or the Printer is the
bo_eneck.

O

989004628-0 2

V mu

P

I
I Exec,itor-1

Reader • Printer

E_ocutor-n

Figure2. Decomposinga problemtoob_a/nncplicauoaspeedup.

Byd_plicalingidemicalproblemsolvingstages,wecanobtainspeedupfrom_plicalioo.

4.2. Correctness

4.2. I. Consistency

In order to achieve speedup from parallelism,we decompose a problem imo smaUer
sub-problems, where each sub-problem is represented by an objea. By doing this, we
lose the luxury of mutual exc!usion between the sub-problems because of interactions and
dependencies that typically exist between sub-pans of a problem. For example, in the
Reader-Executor-Printerproblem, the simplest version is where a line may be operated
upon by one process truly independendy; we might want to _rforrn ASCH to EBCDIC
character conversion of each line, for instance. We organ/ze the problem solving so thaz
the Reader assembles t'ixed-lengd_text su'ings, the Executor performs the conversion, and
• e Printer does output dudes. This problem is well-suired to speedup from the simple
pipeline parallelism illustrated in Figure I. In MscLennan's value/object terminology, a
"fixed-length text string" may be viewed as a value that represents the i-th line in the input
text; the text string is read-only and it is aternporal. The trick is to :w the A_CII and
EBCDIC versions of a text strings as different values corresponding to the i-th line; the
Executor's role is to take in ASCII values and transfo,'m them into EBCDIC values of the
same line. As we will see, ",alue passing has desirableproperties in concurrent message-
passing systems.

In a more complicated example, w_ might want to perform text compression by
encoding words according to their frequency of appearance, where the Reader process
counts the appearanceof wor_ and the Executor assigns words to a variable length output
symbol set. The frequency cable is a sourc_ of trouble; i_ is _.nobject which the Reader
writes and updates, and which the Executor reads. Unfortunately, the semantics we
impose on the text compression task requiresthat the Readercomplete its scan of the input
text before '..heExecutor can begin its encoding task Tlds dependency prevents us from
explo_.ingpipeline parallelism.

' As anotherexample,we mightwan'.tocompilea high-levellanguagesource

program text (e.g. Pascal, Lisp, C) into assembly code. Suppose we allow the Reader to

build a symbol table for functions and variables, and we let the Executor parse the

p 7

1989004628-013

)

token/red output from the Reader, w_,;',_"he Printer outputs assembly code from the
¢:,,,,,._,,^v'__,.._)aYm'anh_trucrures.In the scheme outlined here. the symbol table resides

--d _---r "" -

with the Reader, so whenever the Executor or Printerneeds to access or update the symbol P

table, it must send a message to the Reader. Consistency becomes an important issue k]
wnhin this setup. For instance, suppose that ,.he Executor determines on the basis of its
parse, that the variablex has been declaredglobal. Withina procedure,a local variable also
muned x is defined, which requiresthat er.pressionsreferring to x within this procedureuse
a local storage location. Suppose the endof the procedure is encountered, and since we
want all subsequentoccurrencesto x to referto the global location, the Executor marks the

entry foz x accordingly(via a message to the Reader). When the Printersees a reference tox, it consults the symbol table (via a message to the Reader) to determine which storage
location should be used; if by misfortune the Printerhappens to be handling an expression

pro=dureconts thelocalx, s.ym.bo!t.able
incorrectcode will be generated. The essential point ts mat me symool taole ts an ooject; as
we defined earlier, it is sharedby several parallel processes, and it changes. A numberof)
fixes ar_ possible, including distinguishing variables by the procedure they are occur
within, but thisexample illustratesthat thepresence of objects in concurrentprogram raises
a need to deal with consistency.

ConsWency is the property that some invariant condition or conditions describing
correct behavior of a program holds over all objects in all parallel processes. This is
typically difficult to achieve in a concu_e.,nt program, since t.hepro...g_mitse.lfconsists of a

sequential list of statements foreach mdiv!du.al..,p.ro_s or ob'ject,while c?.ns_u_n..cy_at_._sto anensemble of objects. The field of dismouteo systems tocuses on c_...cmues, g
from consistency maintenance [Cornafion 85, Weihl 85, Film_ .84.]. Snuth [.Smith81]
refers to this prong goal as thedevelopment of a problem-solvu_ protocol.

The work of Schlichting and Schneider [Schlichting 8.,]--is particularly relevant for
our situation: they study partial correcmess properties of unreliable datagram asy_. hron.,ous

Imessage.passing distributed systems fl'om an axiomatic point of view. They ,.oe_.noe a.
number of sufficient conditions for partial correctness on an asynchronous mstnouteo
system:

• monotomc predicates,

• predicate transferwith acknowledgements.

An predicate is monotonic if once it becomes tr_e, it remains so. For example, if
the Reader process maintains a count of the lines in the variable _o:a].Li.nes, and it
encounters the lastlineintheinputtext, as wellhavingseenallprevious lines,thenitmight)

send the predicateP, ":o_:aJ.:._.nes -].6," to the Executor and to the Printer. The Printer ._i
process might use this information even before it has received all the lines, to check if ,'
sufficient resources exist to complete the job, for instance. Intuitively, it is valid to assert
the total number of lines in the input text because that fact remains unchanged (assuming
the input text remains fixed for the durationof the job). Formally,the Reader maintainsthe |

followinginvariamconditiononthepredicateP: ._

Invariar,t:"messagenotsent"or"Pistrue"

In contrast,anassertion that the currentline is 12, as in "cu=ren_Line - 12," changes as
eachlineisprocessedbytheReader.Themonotoniccriterioncannotbeusedto guarantee L
thecorrectnessofthisassertion.

J8
L

1989004628-014

A technique to achieve correcmess without monotonic predicates is to use
,,.t... _.a ,,,_ _ ;,_ i_ to reouir¢ the _nder to maintain the truth condition of a
predicate or assertion until an acknowledgement from the receiver returns. In the Reader-
Executor-Printer example, the Reader follows the convention that once it asserts
"curren_Lin¢ - 12," it will refra_ _om further actions that would violate this fact until it
receives an acknowledgement from the Executor. This protocol allows the Executor to
perform internal processing, queries to the Reader, and updates to the Reader, aLlwith the
assurance that the current line will remain unchanged until the Executor acknowledges the
assertion, thereby signalling that the Reader may proceed to chsnge the assertion.
Fonnall_. the Reader and Executor maintain the following invariant condition on the

' p_licate P:

Invariant: "message not sent" or"P is u'ue"or "acknowledgement received"

Note that the each tecll,_iquehas drawbacks,despite '.heirguaranteesof correctness.
For the m_'-_otonicpredicate technique, the challenge is to define a problem decomposition
and solution protocol for which monotonic predicates are meaningful. In particular, if a
problem decomposition truly allows transfer of values between processes, then by the
semantics of values as we have defiaed them, values are automatically monotonic. This
explains in formal terms why a "data flow" problem decomposition that passes values
avoids difficult problems related to consistency. For the predicate acknowledgement
technique, we may address pmblerm that do not cleanly admit monotonic predicates, but
we lose concurrency in the assert-acknowledge cycle. Less concurrency tends to translate
into less speedup. In the worst case, we may lose so much concurrency in the assert-
acknowledge cycle thatwe find that we have spent our efforts in decomposing theproblem
into sub-problems only to discover that our concurrentprogramperforms no faster than an
equivalent sequentialprogram!

Throughout the design process, we are motivated by a desire to obtain the highest
possible performance while maintaining correctness. For tasks in the problem whose
durations impact the performance measures, we take the approach of looking first for
problem decompositions that allow either value-passing or monotonic predicate protocols.
Where neither of these are possible, we implement predicate acknowledgement protocols.
In the implementation of .Mrtrac-Lamim,we did not have to resort to heuristic schemes that
did not guarantee correcmess.

For initialization tasks, the time to perform initialization tasks (e.g. creating
manager objects and distributing lookup tables) is not counted in the performance metrics,
but correctness is paramount. Since initialization requites the establishment of a consistent
begirming state over many objects, we use the predicate acknowledgement technique to _•
have objects initialize their internal state based on information contained in an initialization
message, and then signal their readiness to proceed oy responding with an
acknowledgement message.

4.2.2. Mutual exclusion

Lamina objects are encapsulations of data, together with methods that manipulate
tl_ data. They constitute morutors which provide mutual exclusion over the resources they
encapsulate, These monitors are "non-nested" because when a Lamina method (i.e.
message handler) in the current CARE implementation invokes another Lamina method, it
does so by asynchronous message passing (where the s_nder continues executing after the
message is sent), thereby losing the mutual exclusion required for he:ted monitor calls. In •
return, Lamina gains opportunities to increase concurrency by pipelimng sequences of
operations.

9

1989004628-015

Within the resmction of non-nestedmonitor calls, the programmermay use Le_ina
monitors to define atomic operations. If correcmess were the sole concern, the
programmercould develop the entire problem solution wttl_n a single method on a single _'
object; but this is an extreme case. The entire enterprise of designing programs for O
muluproccssors is motivated by a desire for speedup, and monitors provide a base level of
mutualexclusion from which a correctconcurrentprogrammay be consu'uctezi.

The critical design task is to determine the data structures and methods which
deserve the vmmiciv/that monitors provide. The choice is far from obvious. Forexample,
in the ASCH-to-EBCDIC translator example, we assumed the Executor process
sequentially scanningthroughthe suing, u'ansla_lg one character at a time. We see that
translation of each character may be performed independently, so a finer-grained problem
decomposition is to have many Executor processes, each translating a section of the text
line. In the extreme, we can arrange for each character to be translated by one of many

replicated Executor processes. Choosing the best decomposition is a function of the
relative costs of performing the character translation versus the overhead associated with D
partitioning the line. sending messages, and reassembling the translated text fragments (in
the correct order!). The answer depends on specific mach_ performance parm_etersand
the type of task involved, which in our exan,ple is the very simple job of character
translation, but might in general be a time-consuming operation. Unfortunately, the
programmer often lacks the specific performance figures on which to base such decisions,
andmust choose a decomposition based on subjective assessments of the complexity of the
task at hand, weighed against the perceived nm-r_meoverhead of decomposition, together
with the nm-wne worries associated with consistency main_nance. On the issue of how to
choose the best "grain-size" for problem solving, we can offer no specific guidance.

-- _. • • • •However, since the CARE-Lamina unulator ts heavily msmame,ted, n lets the
programmer observe the relative amount of time spent in _cmal computation versus
overheadactivities.

Inaddition to providing mutual exclusion, Lamina al_o encourages the structured
programming style that results from the use of objects andm_r.hods. In particular,mutual
_xclusion may be exploited without necessarily building, large, monolithic objects and
methods th,_might reflect poor software engineering pracuce. Since Lamina itself is b?ilt
on Zemlisp s Flavors system [Weinreb 80], it is easy for the progrm_m_.,r to define .o.bj.'ect
"flavors" with instance variablesandassocia_a methods to be atonucally executea w_mma
Launinamonitor. This can provide imponan_ benefits of modularity and structure to
software engineering effort.

To summarize, Laminaobjects andmethods may be viewed as non-nested monitor
constructs that provide the programmer with a base level of mutual exclusion. The
potential for additional concurrency and problem-solving speedup increases as finer
decompositions of data and methods are adopted. However. these benefits must be
weighed against the difficulties of mainutiningconsistency between objects in a concurrent
program. Two techniques for maintaining consistency have been described, differing in
their applicability and impact on concunency.

4.3. Dependence graph programs

The previous sections have defined concepts relevant to the dual goals of achieving
speedup and correcmess. This section builds upon those concepts to provide a framework
in which tradeoffs between speedup and correcmess may be examined. A dependence
graph program is an abstract representation of a solution to a given problem in which •
values flow between nodes in a directed graph, where each node applies a function to the
values arriving on ns incoming edges and sends out a value on zero or more outgoing

10

1989004628-016

m

edges. The edges correspond to the dependencies which exist between the functions
" - _.:.-,cDon$ o_'-'"'4""wiu_,+,_h_ "- " on[Arvind83]. A pure dependencegraphpmgraa, is oi_ h'_"-':'"

m

ate free fro_nside effects; in particular, a pure dependence graph program prohibits a
function from saving state on any node. (Note that this definition does not preclude a _•
system-level programon a node from handling a function f <x,Y) by saving the value of x
if the value of x arrivesbefore the value for z. Strictly speaking, an implementationof an f
function node must save state, but this state is invisible to the programmer.) A hybrid
dependence graph program is one in which one or more nodes save state in the form of
local instance variableson the node. Functions have access to those instance variables.

' Gajskiet.al.[Gajski82]summarizetheprinciplesunderlyingpuredataflow

computation: f•asynchrony

• functionality. II

Asynchro.y means that all operations are executed when and only when the required
operandsareavailable.Functionality meansthatalloperationsarefunctions, that is, there
axeno side effects.

lure del_endencegraph programs have two desirable propemes. First, consistency
is guaranteedby design. As we have defined it, there are only values and transformations
applied to those values. There ate no objects to cause inconsistency problems. Second,
we can theoretically achieve the maximal amount of parallelism in the solution, and if we
ignore overheadcosts,maximize speedupin overallperformance. This followsfrom the
asynchronyprinciple, which meansthat in the ideal case we can arrange for each
computation on a .ode to proceed as soon as all values on the incoming edges areavailable.

Hybrid dependence graph programs allow side effects to instance variables on
nodes, thereby making it more convenient and straightforward to perform certain
operations, especially those associated with lookup and matching. This immediate:y
introduces objects into the computational model, and raises the usual concerns about
consistency andcorrectness.

We will use dependence graph programs to serve two purposes. First, we depict
the dependencies contained within a problem. Second, we explain why we made certain
design decisions in solving the Airtnc problem; in particular, we show why we impose
certain consistency requirements on the problem solving protocol. A dependence graph
serves as an abstract represe_:tationof a problem solution, ratherthan a blueprint for actual
implementation. Specifically, we want to avoid the pitfall of using a dependence graph
program to dictate the actual problem decomposition. Overhead delays associated with
message routing/sending and process invocation degrade speedup from the theoretical ideal
if the actual implementation chooses to decompose the problem down to the grain-size
typically found in a dependence graph representation. Given an arithmeticexpression, for
instance, it may not be desirable to define the grain-size of primitive operationsat the level
of add, subtract, andmultiply. This may lead to the undesirable situation where excessive
overhead time is consumed in message pscking, tagging, routing, packing, matching,
unpacking,and so forth, only to support a simple add operation.

Congider the following numerical example from Gajski el. al. [Gajski 82]. The
pseudo-code representation of the problem is as follows:

11

1989004628-017

I"

;..a&_ d.e. f
¢0..0

a£ - di / • i
bi - ai * fi
ci - bi + ci_I

and
a,b,¢

One possible dependence graph _ro.gr_ for fl_s problem is..shownin .l::il_. 3. This is .the
same graphpresented by Gajskl el. at. they .assumemat mvls.lon taxes _ pr.ocessmg
units, rn-ltiplica¢ion takes two uni_, and addiuon takes one urm. As nor_i m theu"paper,
the critical path is the computational sequence a1, b1, cl, c2, c3, c4, c5, c6, c7, c8; the
lower boundon the execution time is 13 time units.

dl. el d2.e2 d3. e3 (14.1,4 d5.eS d6. e6 (:17.e7 dS.ell

cO 08

Rl_u_ 3. X dependence graphprogram for a simpl_ numerical ¢ompuu_ion.

A possible concurrentprogr,_'nimplementa6ot_would be to assign eight processes
to compute the quamities bl,...,b 8, and a nin_ to combine the bi and output cl,...,c 8.
Such an arrangementmaximizes the decomposition of the probleminto sub-problems r.hat
may runconcurrently,while minimizing the communicationoverhead. For insumce, there D
is no loss in combining the computation of c1.....c8 into a single process because of d_e

inberenfly serialnam_ of this pr, icular compur_on.

Another concurrent program might choose a slightly different decomposiuon and
panir.ionthe computation of Cl,...,c 8 into, say, three processes: Cl-C2-C3, c4-c5-c 6, and
c7-c 8. This arrangemem uses 11 processes versus the 9 processes in the previous
example. While this leads to no improvement in the lower bound of 13 _ units for a
single computation with d, e, and f, it shows an improvemem with repeated compuw.ions
with differem values of the input arrays, d, e, and L For instance, this allows one
compuu_ion to be summing on the c7-c8 process while anotheris summing on d_ c4-cyc 6

process. Depending on the compiexiry of the computation relative to the overhead costa, itmight even be worthwhile to det'me one process for each of the c 1.....c8, giving 16

processes overall. This i]lusu'acestwo poinr.s. First, a strictly sequemia, compur_on gives

12
I)

] 989004628-0] 8

t

an opportunityforpipelineconcurrency,ffm .an.ysuchcomputationsarerequired.Second,
givena dependencygraph,many possibleprooAemdecompositionsarepossioie. m

Gajski et. al. _so_ present a different dependence _ .aph program .that is optimized toeliminate the "ripple summation chain by a more ett_c!ent summation network. The

Idependenc,e graph program for this scheme is shown in Figures 4 and 5. Figure 4 is the
top-level definition of the program. We use the convention of using a single box,

op_.mized sua_ation, in Figure 4 to represent the subgraph that performs the more
efficient summation. Figure 5 shows the expansion of that box as a graph. Showing a
dependence graph program in this way is merely a convenience; one should envision the _.
subgraphs in their fully expanded form in the top-level dependence program definition.

JThe associative property of addition is used to derive the optimized summation
function. For instance, the computation of c8 is rewritten as follows:

" 1
- ((((((((cO + b11 + b21 + b3) + b41 + bsl + b6l + b 7) + b81

- (cO + ((bI + b2) + (b3 + b4))) + ((b5 + b_) 7 + bs))

By regrouping the addition operations, this dependence graph program has more
parallelism, and reduces the lower bound on execution time from 13 to 9 execution time
units. It is important to realize that the second program is truly different from the first; it
cannot be obtained from the first by graph transformations or syntactic manipulations that
do not rely on the semantics of the fimctions on the nodes.

dl, e_ d2., e2 cl3, 03 d4, 04 d5, 05 06.e6 d7, o7 (18, e8

fl f2 I t3 f4 f5 f6 f7 f8

II

bl b2 b3 M b5 I)6 b7 b8

cO op_mized summation

cl c2 c3 c4 c5 c6 c7 ¢8

Figure 4. A dependencegraphprogramforthe simplenumericalcomputation.
This uses optimization of the recurrencerelation using the associative property of
addition. This represents the "top.level" definition of the solution. The optimized
summation subgraphis shown here s single box, and is shown m expanded form m
Figuse 5.

l

1989004628-019

op+mizld uummdon ill clefine<las...

¢0
t4

cl c2 c3 ¢4 c5 ¢6 c7 c8

RI_ 5. De_/donofthe"ol_nizedsummauo."s.bllnph.

This example highlights several points. First, a given problem may have more than
one valid dependence graph program. In the example presented here, the use of knowledge
about the underlying semantics of the addition function allows more parallelism. Second,
the dependence graph program serves as a intermediate representauon from which the
solution may be defined for a parallelmachine. Third,the dependence graph program does
not necessarily make a commitment to the form of the concurrent program. Fourth, for
convenience we may describe a dependence graph program as a top-level graph, together
with several subgraphdefinitions.

$. The Airtrac problem

In Airtrac, the problem is to accept radartrack data from one or more sensors that
arelooking for aL,craft. Figure 6 depicts a region under survedlance as it might be seen on
a .d_lay screen at a particular snapshot in _me. (Whereas Figure 6 shows many reported
sighungs, an actual radarwould probably show only the most recent sighting.) Locations
are designated as either good or bad, where a bad location is illegal or unauthorized, and a
good location is legal. The "X" and "Y" symbols represent locations of a good and bad
airport, respectively. The locations of radarand acoustic sensors are also shown. The
small circles represent track reportsThatshow the lo_ation of a moving object in the region
of coverage.

Track reports are generated by underlying signal processing and tracking system,
andcontain ",,hefollowing informanon:

• location andvelocity estimate of object (in x-y plane)

14

1989004628-020

&
• location and velocity covariance

• the time of the sighting, called ",hescantime •

• track id for identification purposes.

We would like to answer the following questions in real-time: &

• Is an aircraft headed for a bad destination? J

• Is it plausible that an aircraft is engaged in smuggling?

By "smuggling" we mean the act of transporting goods from a region or location desig- •
hated as bad to another bad location. For instance, flying from am illegal airstrip and
landing at another illegal airstrip constitutes smuggling.

i
0

15

] 989004628-02]

Kl.t

X 2oo0_rport
badairport

0 track report(id@time)

radar

time - 100

X o

y

idl@lO000

08
Id1@600 0 id2@lOO

o° o0

RI;_re6. I_uttoArarat.
Thisshowstheinputsth=thesystemreceives.Thesmallcirclesmpmseatestimated
positio_ of objectsfromradarorw_umc semon taggedbytheiridentifica,_onnumber
and obes_a_on _.e: thegoal of the systemis to use thetime historyof thosesilO_nls
to inferwhetheran aircraftexists, itspossibledes_utiom, md itssu'ateiS,.

This paperdescribesour implementationof a solutionof a portionof the Airtn¢
problem. We referto thisportionu the_ra association module. Figure7 depictsthe
desiredoupu_of thedataassoci_on step:groupingsof reportswiththesametrackid into
straight-line,constant-speedsections.These.arecalledRadarTrackSegraents,_d have
fourproperties:

• If the RadarTrack Segmentscontainsthreeor morereports,a best-fitline is
computed.If thefit is sufficientlygood, thesegmentis declaredconfirmed.

• If a best-fit line has been computed,each subsequentreportmust fit the line
sufficiendy closely. If so, the RadarTrack Segments remains confLrmed.
Otherwise,the reportthat failed to fit (ca/l it the non-fittingreport)is treated
specially,andthe trackis declaredbroken.

• A brokentrackcausesthe non-fittingreportandsubsequentreportsto be usedto
formanewRadarTrackSegment.

16

1989004628-022

•Thelastreportforagiventrackiddefinesthatatrackisdeclaredinactive.
klM

The remainingpartsoftheAinracproblemhavenotvetbeenimplementedasofthis

writing,butaredescribedmorefullyelsewhere[Minami'87,Nakano87].

time = 100

+ x IY

_1@10_0

I°°° ,oo

 =o.o , I
Figure7.Groupingreportsintosegmentsindataassociation.

Th/sshowsthefirs¢_epm problemsolvint,,groupingthen=portsintostraight-linesec-
tionscagedRadarTrackSegments.

5. I. Airtrac data association as dependence graph

Figure 8 shows the Ainrac data association problem as a dependence graph
program.On aperiodicbasis,trackreportsconsistingofpositionandvelocityinformation
fora setoftrackidaentersthesystem.Two operatio_,_reperformed.First,thesystem
checksifatrackidisbeingseenforthefirsttime.Ifso,anew track-handlingsubgraphis
created.A track-handlingsubgraphisshown inFigure8 asafunctionalbox labeled
"handletracki,"whichexpandsintoa graphasshowninFigure9. Second,thesystem
checksifanytrackidseenina previoustimehasdisappeared.Ifso,itgeneratesan
inactivationmessageforthehandle :rack subgraphfortheparticulartrackidthat
disappeared.Ifthetrackidhasbeenseenpreviously,thenitissenttotheappropriate
handle t2:ack subgraph.

We dis6nguishbetweenpurefunctionalnodes,shownasrectangles,andside-effect
nodes,shown asroundedrectangles.One useofside-effectnodesistokeeptrackof
whichtrackidahavebeenseenattheprevioustime.Forinstance,by performingset
differenceoperationsagainstthecurrentsetoftrackida,itispossibletodeterminethe
disappearedandnew tracks:

disappearedTracks - p=eviousT=acks - currentTracks

17

1989004628-023

newTracka -. ¢urren_Tracks - prev£ousTcacks

One way to implement tills scheme is to have _he _aJ ctJ.sappearect? _rld ia prev_.ously
seen? nodes update local variables called pceviousTracks and ¢urrentTrack8, as
successive urack reports arrive.

_ . inecttvate _ _
" (_Is ! tre_ q, " q'

' I \ " , _1 I'

I f .,nd _ to IX m. R2._ _ .
l I _at, [_ ins_vato _ •

4 4 • 4, I IN"-"." ,
4 , 4 I

m. " Ir ,..,.tr._'.l _ _ I - " I'
: I ', : -----'1

rladorTrackMlmlgenl . _ _

FiFare8. DependenceIp'aphpreston representationof AL-u_dmausoci-,_oo.

The dashed boxes indicate the problem decomposition ,seal .n the Lamina
implementation.

Besidesdetectingnew and disappearedcracks,side-effcanodesare usedto createa
new crack-handlingsubgraph,and maintainthelookuptablebetween trackid and the
message pathway to each crack-handling sub_aph. _e- tzack creates a new crack handler
subgraph.Whenever a new crarJ{is encountered, send cepor_ to appcopEiace track
is noufied, so that subsequent reports will be routed correctly. This arrangement requires
that one and only one crack handler exist for each track id. Send =epoc_ _o
appropriate t=ack saves the handle _ to the crack handler created by new t:ac_, SORTS
the incoming reports, and sends reports m their proper des_ons.

I) In this abscract program, we implicitly assume that only one track report may be
processed at a time by the four side-effect nodes in Figure 8. If we allow more than one
crack report to be processed concurrently, we may enccunter inconsistent situations that
allow, for instance, a crack id to be seen in one crack report, but the send repor_ to
app=opria_e t=aek node does not yet have the handle to the required track handler
subgraph when the next crack report arrives. We define the program semantics m avoid
these situ_ions.

Handle track receives crack reports for a panic_ar id, as well as an inaaivafion
message if one exists. I_ is further decomposed into a subgraph as shown in Figure 9. The

4A haJldle is arlalogous to a mail address in It (physical) postal system: a Lamina ob]ea may use
II anotherobjecfstrundletosendmessagestomatobject.Sincethemessagepassingsystemutilizesdymtmic

routm8andwe assumethatan object _nains sumouaryonce cmauxi, thehandledoes no_needto encode
any informationaboutthe particularpathmessages shouldfo"ow.

18

1989004628-024

nodes in the handle track subgraph pass a structured value between them, called track I;c_-':,cn_,. A ,_,.,_l...,,,.,..r h,c the following internal s_ructu_:

• report list (a list of track reports, initially empty)

• best.fitpathin thelinex-y(avectOrplane)of real numbers describing a straight-line constant-velocity IEach node may transform the incom;ng value and send a different value on an outgoing

edge. Add appends a report ta _he report list of a track segment. L£ne_.t computes the I

best-fitline,and iftheconfirmationconditionshold,sendsthetracksegmenttoconf£rnu
conf£rm declares the track segment as confirmed, and passes the list to check _£t. If
J._.ne_£t fails to confirm, the earliest report in the list is dropped by atop, and _other
add, 1£ne_£_: box awaits the arrival of the next report to restart the cycle. The
_.n-ct£v-tefunctionwaitsun_lallreportshavearrivedbeforedeclaringthetrackinacuve.
Conceptually, we view the operations of confirm and inactivate as being monotonic
assertionsmade to the"outsideworld,"ratherthanvaluetransformationstothetrack
segment.

"handle Vsck" is d_m_d as,..

,, I,II_I, R_ ,%

/ /" o-,],

Ri..4 , I _'
% • t,

v,
4 •

Ri..... glut
t

Pam_' Tra_ t

l_gure 9. Decompositionof the "handlewack"sub-problem.

The dashed boxes indicate the problem decomposition used in the Lamina

implememauon.

Check _£: itself is further decomposed into more primiuve opera_ons, as shown
inFigure I0. The 1£necheck operation is similartO the Z_nef£_ functionpreviously

19

1989004628-025

M*."I_ _ _ lq*_/IY'L M,_q_ M./'qJ_.,_ l'_q]'UqIk_ _ X._ _ M,rYM._M_ X_q_ M_ I_WM K/_M_qTf R MJq kL_KJ_I/J_ M._M Jqlki/'ll,]q11{/YM RM.r[M._ M,,W_ MrllPT'MK1a

k

described, except that it compares a new reportagainst the best-fit linecompmed duringthe
&J_I_]LAI, U_R_&fA.AU|$. IA MiII_ AIq_W AV_.PVA** *Aa**.M*,*_*_, '._ A") ---- _1_

this cycle is repeatedfor the next report. If the linecheck operation fails, then the track is)
declared broken, a new tracksegment is defined. This track segment is sent the reportthat _,_i
f_iled the linecheck operation, in addition to all subsequent reportsfor this particulartrack
id. The trackhandlingcycle is repeated as before.

"checkfit"is_efinedas...

@

, ,lirlecheck

linecheck fail linachack

confirm add, pm h_ohocki break, naw har'¢llo

linecheck 1 segment track _

_ fail linoJht;Ck _ _

" break, new 1_ handle] RI..2, RI+3, _'
segment track

4 4
|

Ri+I, Ri+2 '

\ Radar Track Segmont ,'

FigureI0. Decomposilio_of_e"oh(okfit"sub-problem.
The dashed boxes indicate the problemdecompositionused in the Lamina
implementation.

A number of observations may be made about the dependence graph program
describe_ in this section. First, the sequence of the reports ma_ers. The graph structure •
clearly depicts the requirement that the incorporation of the Ri-th report into the track
segment by the add operation must wait until all prior reports, RI R.i-l, have been
processed. This is true for the _.n,,a=._,].£nechsck, _nd _.na='c£vag_ functions.
Second, this program avoids the saving of sta_e information except in the operations that
must determine whether a given track id has been previously seen, and in the sorting
operation where track reports are routed to the appropriatetrack handler. Except for these,
we Irmdthat the problem may be cast in terms of a sequence of value transformations.
Third, the program admits the opportunity for a highdegree of parallelism. Once the track
handler for a g;-/en track id has been determined, theprocessing within that block is
completely independent of all other tracks. Fourth, the opportunity for concurrencywithin
the handling of a particular track is quite low, despite the outward appearance of the
decompositions shown in Figures 8 and 9. Indeed, an analysis of the dependencies shows
that reI:_ns must be p_'ocessed in order of increasing scan:ime. F_,h, unlike certain
portions of the dependence graph that have a structure that is known a priori, the track

20

"I989004628-026

I

handler portions of the graph have no prior knowledge of the u-ack ids that will be
encountered during processing, implying that new u-acksneed to be.handled dynamically. ',

$.2. Lamina implementation

In this section, we express the solution to the dam associ._don problem as a set of
Lamina objects, together with a set of methods on those objects which embody the absu'act
mlutionspecification presented in the previous section.

Figu_ 11 shows how we decompose the Airtracproblem for solution by a Landna
concurrentprogram. We define six classes of objects: Main Manager, Input Simulator,
Input Handler, Radar T,-'ackManager. Radar Track, and Radar Track Segment. Some
objects, referred to as static ob/ects, are created at initialization time, and include the
fotlowing object classes: Main Manager, Input Simulator,InputHandler, and Radar Track
Manager objects. Others are referredto as dynamic objects, are created at run-time in
response to the particular input data set, and include the following object classes: Radar
Track andRadar Track Segmcnt.

[_InputSimulator]

J radarreports oon_'n_ion,

linl :)er_°_icbatches _ RT1 H RTS11 l_l_ immtJv.tion

dispatch crMm, sort
reorder, cm,,,e rsordsr, reorder,

dotoct breaJ_ clemot briMIkl

_..t. mamager, cr..t, cr..t.

L M.in Manag.rJ

Rgtue I I. Objea smacnu'e in the dat_ assoaati_o module.

Each object is implemented as a Lamina object, which in Figure 11 corresponds to a i
separate box. The problem decomposkion seeks to achie,_e concurrent processing of
independent sub-problems. The Lamina message-sending system provides the sole means
of message and value passing between objects. Wherever possible, we pass values
between objects to minimize consistency problems, and to minimize the need for protocols
that requi_, acknowledgements. For example, we decompose our problem solving so that
we require acknowledgements only during initializaxion where the Main Manager sets up
the communication pathways between stm.icobjects.

With respect to the dependence graph program, the Lamina implementation takes a
straightforward approach. ALlof the side-effect functions contained in Figure _, together
with some operations to support replication, reside in the Input Handler and Radar Track

21

!

1989004628-027

Managerobjectclasses.Ob_cts in thesetwo classesarestatic;we createa predetermined
numberof them at initiaIizaziontime to handle the peak load of reports throughthe system.
o--I:...:,,. ;o o,,,,,,,,,_,,A_,, ,,,.,_itionlno t..hetack nf m..entmi_.in_,new _ndcli._arn'_._mslrr-aclc
ll_f_JL,gt,,4Lt_',t, ttt _ _,,Jj_vt _,_*. vj l[,*_ O *,_ _ t't

ids-m'nongRadarTrackManagersaccordingtoa simplemodulocalculationonthetrackid.
Given thepartitioningscheme,each Radar Track Manager operatescompletely
independentlyfromtheothers.Thus,althoughitneedstomaintainasetofobjects(e.g.
thecurrenttracks,previoustracks),theobjectsareencapsulatedina Laminaobject.
Accesstoandupdatingoftheseobjectsisatomic,providingthemutualexclusionrequired
to assurecorrecmessasspecifiedbythedependencegraphprogram.

FunctionsinFigures9 andI0residemostlyinobjectsoftheRadarTrackSegment
class,withtheinactivationfunctionbeingperformedbyobjectsoftheRadarTrackclass.
Objectsofthesetwoclassesaredynamic:we createobjectsatrun-timeinresponsetothe
specifictrackidsthatareencountered.Foranyparticulartrackid,oneRadarTrackobject
togetherwithoneormoreRadarTrackSegmentobjectsarecreated.A new RadarTrack
Segmentiscreatedeachtimethetrackisdeclaredbroken,whichmay occurmorethanonce
foreachtrackid.Unlikethedependencegraphprogramwherewe postulatea track
segmentasa valuesuccessivelytransfon'nedasitpassesthroughthegraph,theLamina
implementationdefinesaRadarTrackSegmentobjectwithinstancevariablestcrepresent
theevolvingstateofthetracksegment.We implementallthemajorfunctionsontrack
segmentsasLarninamethodsonRadarTrackSegmentobjects.AGain,Laminaobjects
providemutualexclusiontoassurecorrecmess.

Althoughnothingintheproblemformulationdescribedhereindicateswhy we
createmultipleRadarTrackSegmentsforagiventrack,we dosoinarttizipationofadding
functionalityinfutureversionsofAirtrac-Lamina.FromexaminationofFigureI0,we see
thatgivenanysequenceofreportsRi,andanypattemofbrokentracks,we obtainno
additionalconcurrencybycreatinganew RadarTrackSegmentwhen a trackisdeclared
broken.Thisisbecauseinthedependencygraphprogram?resentedhere,no activity
occursononeRadarTra,:icSegmentafterithascreatedanotherRadarTrackSegment.
However,we anticipatethatinsubsequentversionsofAirtrac-Lamina,a RadarTrack
Segmentwillcontinuetoperformactionsevenafteratrackisdeclaredbroken,suchasto
respor_toqueriesaboutitself,ortoparticipateinoperationsthatsearchoverexisting
RadarfrackSegments.

Logically, the semantics of the dependency graph program and the Laminaprogram
are equivalent, as they must be. The difference is that the former requires a graph of
indet-mite size. where its size corresponds to t2tenumber of reports comprising the track.
The ,auer requires a quantity of Radar TrackSegment objects equal to one plus the number
of times the track is declared broken. Although we can easily conceptualize a graph of
indefinite size in a dependency graph program, we cannot create such an entity in practice.
Because object creation in Lamina takes time, we _y to minimize the number of objects that
arecreateddynamically, especially since t_.ir ¢n'ealiontime impactsthe criticalpath time. A
poorsolutionistodynamicallycreamtheobjectscorrespondingtoanindefinite-sizedgraph
aswe needthem.A bettersolutionistocreateafinitenetworkofobjectsatinitialization
time,withanimplicit"folding"oftheinfinitegraphontothefinitenetwork,thereby
avoidinganyobject-creationcostatrun-time.OurLaminaprogram,infact,usesahybrid
ofthesetwoapproaches,foldinganindefinite"handletrack"graphontoeachRadarTrack
Segmentobject,andcreatinga new RadarTrackSegmentobjectdynamicallywhen a a
trackisdeclaredbmi'_n.By thismechanism,we modeltransformationsofvaluesbetween
graphnodesby changestoinstancevariableson a Lamina object.The effecton
performanceisbeneficial.Relativetothefirstsolution,we incurlessoverheadinmessage
sendingbetweenobjectsbecausewe havefewerobjects.Relativetothesecondsolution,
we creamobjectsthatcorrespondtotrackidsthatappearinthtinputdatastreamastheyare

22

1989004628-028

needed, which has the effect of bringing more processors to bear on the problem as more

Both the Radar Track and Radar Track Segment collect reports in increasing
scantime sequence. They do so because of the ordering dictated by the dependence graph
program, and because the Lamina implementation at the time the experiments wer_
performed did not provi_ automatic message ordering. Moreover, we know that simply
collecting reporu in orderof receipt leads to severe correctness degradation. For _sumce,
if the scan6me_are not contiguous, the scheme by which a RadarTrack Segment con_7'ates
the line-fit leads to nonsensical results because best-fit lines will be computed based on
non-consecutive position estimates, leading to erroneouspredictions of aircraftmovement.
To circumvent O,ese problems, we use applicarion-,evel routines to examine the scamime
associated with a report, and queue rer"orts for _,hich all predecessors have not already
been harMled. These routines effectively insulate the rest of the application from message
receipt disorder, and allow the Lamina program to successfully use the knowledge
embo_fiedin the dependency graphprogram.

To indicate the size of the problem, a typical scenario that we experimented with
contained approximately 800 radar trackreports comprising about 70 radaru'acks. At its
peak, there is data for approximately 30 radar tracks anivmg simultaneously, which
roughly correspondsto 30 aircraftflying in the areaof coverage. t

The correspondence between the Laminaobjects in the implementation presented
here and the primitive operations embodied in the dependence graphprogram is shown in
the Table I. The functions described in the dependence graphs are implen_nted on Radar
Track Manager, RadarTrack, andRadar Track Segment objects. The Main Manager and
Input Simulator perform tasks not mentioned in the depend_nce graph program. Their
tasks may be viewed as overhead: the Main Manager performs initialization, and Input
Simulator simulates the input data port. The Input Handler's job is to dispatch incoming
reports to the correct Radar Track Mar.ager, thereby supporting the replication of the Radar
Track Manager function across several objects. In this way the task of tit, Input Handler
may be viewed as a functional extension of the Radar Track Managertasks.

i
I
D

q989004G28-029

i
Table I. Co.,-respondenceof Lamina objects with functions in the dependence graph _'

i/dmJak._2.i_,_ Corre_spondinfdependence _m'ap_h proCrarn_operation

MainManager -none-
(Create the manager objects in the system at initialization
time.)

Input Simulator -none- "
(Simulate the input data port that would exist in a real
system. This function is an artifact of the simulation.)

Input Handler -none-
(Allows replication of the RadarTrackManager objects; this
may be viewed as a functional extension of the RadarTrack

Manager.)Rad=Tr_kManager _as d/sappeaced?, id previously seen., new track,

send Eepor_ _o appropriate _rack

RadarTrack ed_ inactivate

RadarTrackSel_'nt add, linefiu, confir.-., drop, inac_ivat e,

linecheck, OF. break, new --,_gmen_

NTableIalso_ows _ we decompose"J_problemtoalesserextemdmn nught
suggested by the dependence graph program,but the overall level of decomposition is still
high. We "fold" the dependence graphonto a smaller number of Laminaobjects, but we
nonetheless obtain a high degree of concurrency from the independent hen.dling of sept. ltracks. Additional concurrency comes from the pipelining of operauons between me
following sequence of objects: Input He,idler, Radar Track Manager, Radar Track, and
RadarTrackSegment.

D
[]

6. Experiment design

Given our experimental test seep, there are a large number of parametersettings.
including the number of processors, the choice of the input scenario to use, the rate at
which the input data is fed into the system, the number of manager objects to utilize; for a h
reasonable choice of variations, trying to run ,11combinations is futile. Instead, based on
the hypotheses we anempted to confirm or discord'am, we made explicit decisions about
which experiments to try. We chose to explore the following hypotheses:

• Performance of our concurrent program improves with additional processors, •
_herebyanaining significant levels of speedup.

1989004628-0g0

!
•Correct:.essofourconcurrentprogramcanbemaintaineddespiteahighdegreeof

problem decomposition and bJgb-tyoverloaded i_at data c.emditions.

• The amount of speedup we can achieve fa'omadditional processors is a function
of the amount of parallelism inherent in the input data set.

Long wall-clock times associated with each experiment and limited resources forced
us to be very selective about which experiments to run. We were physically unable to
explore the full combinatorial parameter space. Instead, we varied a single experimental
parameterat a time, holding the remaining parameters fixed at a base setting. This strategy
relied on an intelligent choice of the base settings of the experimental parameters.

We divided our data gathering effort into ['wophases. First, we took measurements
to choose the base set of parameters. Our objective was to run our concurrentprogram on
a system with a large number of processors (e.g. 64), picking an input scenario that feeds
data sufficiently quickly into the system to obtain full but not overloaded processing N
pipelines. We useda realistic scenario that has paraUelism in the number of simultaneous

raircraft so that nearly all the processors may be utilized. Finally, we chose the numbers of
manager objects so the managers themselves do not limit the processing flow. The goal
was to prevent the masking of phenomena necessary to confirm or disconfam our
hypotheses. Forexample, if we failed to set the input data rate high enough, we would not
fully utilize the processors, making it impossible that additional processors display
speedup. Similarly, if we failed to use enough manager objects, the overall program
performancewould be strictly limited by the overtaxed managerobjects, again negatingthe
effect of additional processors.

Based on measurements in phase one, we chose the fo :owing settings for the base
set of parameter settings:

• 64 processors,

• Many-aircraft scenario (described more fu.Uybelow),

• Four input handier objects,

• Four ,adar trackmanager objects,

• Input data rate of 200 scal,s per second.

These settings give system performance that sugges_ that processing pipelines are
full, but not overloaded, where nearly all of the processing resources are utilized (although
not at 100 percent efficiency), and the manager objects arenot themselves limiting overall
performance.

The input data rate governs how quickly track reports are put into the system. As
reference, the Ainrac problem domain prescribes an input data rate of 0.1 scan per second
(one scan every 10 seconds), where a scan represents a collection of track reports
periodically generated by the tracking hardware. For the purpose of imposing a desired
processing load on our simulated multiprocessor, our simulator allows us to vary the input
data rate. With a data rate of 200 scans per second, we feed data into our simulated
muhiprocessor 2000 times faster than prescribed by the domain to obtain a processing load
where parallelism shows benefits. Equivalently, we can imagine reducing the performance
of each processor and message passing hardware in the muRiprocessor by a factor of 2000

25

1989004628-031

w achievethe sameeffect, or with any combination of input dam ra_eincrease andhardware
speed reductionthatresults in a net factor of 2000.

In the second phase, we vary a single parameterwhile holding the other parameters
fixed. We performthe following set of three experiments:

• Vary the number Gfprocessors fi'om 1 to lO0.

• Varythe input scenario to use the one-aircraftscenario.

• Vary the number of manager objects.

Figure 12 shows how the many-aircraft-and one-aircraft scenarios differ in the
number of simultaneous a_ctivetracks. In the many-aircraft scenario, many _ircraft are
active simultaneously, giving good oppornmity to utilize parallel computing resources. In
contrast, the one-aircraftscenario reflects the extreme case where only a single aircraftflies
through the coverage areaat any instant, although the total number of radar track re.portsis
similarbetween the two scenarios.. -]t_o,:ghbroken tracks in the one-nircra_ scenariomay
give rise to multiple tracL"ida for the single aircraft, the resulting radar tracks are non-
overi_ping in time.

26

1989004628-032

Active Tracks vs. Scan

3O

-_ 20
U

- 4- Many-aircraf_

_ _/ - scenario

• 10 -- One-aircraft

z|. ! , , ,eno0 • I ; I "

0 20 40 60 80 1460 1500

Fipue 12. Comp_isonof thenumberof_'Uvetar.ksinthenumy-_rcr_mdooe-
a_mLffscenarios.

"Ibisshowsthenumberof activetracksvem]sthescan. Thescar numbercorrespondsto
scenariotimein incrementsof0.1seconds.

7. Results

7.1. Speedup

Our performance measure is latency. Latency is defined as the duration of time
from the uomt at which the system receives a datum which allows it to make a particular
conclusion, to the point at which the concurrent program makes the conclusion. We use
latency as our performance measure instead of total running time measures, such as "total
time to process all track reports," because we believe that the latter would give undue
weight to the reports nearthe end of the input sequence, ratherthan weigh performance on
all track reports equally.

We focus on two types of latencies: confirmation latency and inacti"- 'm latency.
Confirmationlatencymeasuresthedurationfromthetimethatthethirdcons_.,_ 'e report
isreceivedforagiventrackid,tothetimethatthesystemhasfitteda linethzoughthe
points, determined that the fit is valid, and it asserts the confirmation. Inactivation latency
measures the duration ,,_'omthe nrne that the systena receives a track report for the time
following the last report for a giver, track td, to the time when the system detects that the
track is no longer active, and asserts the inactivation. Since a given input scenario contains
many track reports with many distinct track ids, our results report the mean together with
plus andminus one standarddeviation.

Figures 13 and 14 show the effect:, on confirmation and inactivation latencies,
respectively, from varying the number of p:ocessors from 1 to 100. Boxes in the graphs

27

1989004628-033

indicate the mean. Errorbars indicate one standard deviation. The dashed line indicates the
l,_.., n¢ lin_ .qneeduo relati_,e ,'_ the sinile processor case: its locus is equivalent to an

S-n/l'$]_e.dupiev'elof n for n processors. -

Confirmation Latency vs Number of Processors

I°I. . "

" .t
o

"I
+ "I"tI-+

'1 o °

° o

I

.01 , :
1 10 100

NumberofProceuorJ

_gtwB13. ConF_mauonlatencyasafuac_onofthenumberofprocesson.

Thismeastnsthedurmoefromthetimethatthedc,d comecmive_ isreceivedfor•
given track id, to the time thatthe system has fitted • line throughthe points, and
dzuumimdthinthefit is vMid.

The results for both the confirmation and imctivation show a nearly Lineardecrease
in the meat', latencies, corresponding to S100/1 speedup by a factor of 90 for the

conf'umation late_'tcy,and to S100/1 speedup by a factor of 200 for the inactivation latency.
The sizes of the error bars make it dii_cult to pinpoint a leveling off in speedup, if there is
any, over the 1 to 100 prc=essor range.

2, 1

1989004628-034

Inactivation Latency vs. Number of Processors

10

"" "_t l/near spe'_._iup

_ee4e eo °

| "'-1"

- f i",..,t
/.

.0, , , , . . , ..,.,..
1 10 J, J_O

N-_b,r ofProcmm-s

Figure 14. Inactivation latency as • function of the number of processors.

This measures the duration from the time that the system mceixes a track report for the
time following the last nepon for • g;iven track id. to the time '._hen the system detects
that the track is no longer active, and ,_s_rts that conclusion.

7.2. Effects of replication

By rcplicating manager nodes, we measure the impact of the number of manager
objects on performance, as measured by the confirmation latency. In one er.perimentwe
fix the numberof RaoarTrack .'vlanagersat 4 while we vary the number of InputHandlers.
In the other experiment we fix the number of InputHandlers at4 while we varythe number
of RadarTrackManagers.

Figures 15 and 16 show the results. We plot the confirmation latency versus the
number of managers, instead of against the number of processors as done in Figures 13
and 14.

29

1989004628-035

Effect of Radar Track Managers on Confirmation Latency
an

I00_ ____

i N=mber of Processors10" . 4- 36

1

• . . . 0

Number d Radar Track .Manqw=

Rf_re 15. Confirmation latency as a function of the number of rad_ track
numgen.

We see thatreplicating RadarTrack Manager objects i_pmves performance; this is
because increasing the number of processors does not unpro_e performance in the single
Radar Track Manager case, but does in the 4 and 6 Radar Track Managers cases (see
Figure 16). Put another way, if we had not used as many as 4 Radar Track Manager
objects, then our system performance would have been hampered, and might even have

ecluded the high degree of speedup displayed in the previous section. Comparing
gures 15 and 16, we also observe that using.more RadarTrack Managers helps redu_

confirmationlatency more significandy thanusing more InputHandlers.

An interesting phenomenon occurs Ln the 16-pro--,essorcase. Although the
) conclusion is not defmhive given the size of the errorbars, increasing the number of both

types of manage_ _om 2 to 4 and 6 increases the mean latency. The likely cause is the
currentobject-to-processoraIlocstion schen_: becauseeach manager object is aUocaxedto a
distinct processor, increasing the number of manager objects decreases the number of
processors available for other types of o0jects. Given our allocation scheme (described
more fully in Section 8.2), using more managers in the 16-processor case may acmaUy
impede speedup.

30

1989004628-036

...................................... I

Effect of Input Handlers on Confirmation Latency

100=

Number of Input h_undla's

_gUm 16. Confirmation latency u a function of the number of input i_m:lkni.

The optimal numberof managerobjecisappearsto sometimesdependon _he
numberof processors.For RadarTrack Managers,2 or 4 managersis best for the 16-
processorsarray, and 4 or 6 managersis best for the36 and 64-processorarrays. For
Input Handlers,thenumberof n_a'lagersdoesnotappearto makemuchdifference,which
suggeststhat Input Handlers are less of a throughputbottienecgthan Radar Track
Managers. This suggests that in practiceit will be necessaryto consider the intensity of the
managers' tasksrelative to the total task in orderto make a programwork most efficiently.
Overall these experiments conf'u'm that replicating objects appropriately can improve
performance.

7.3. Less than perfect correctness

OurLaminaprogramoccasionallyfailstoconf-u-matrackthatourreferencesolution
properlyconfirms.Thisa_'isesbecausetheconcunentprogramdoesnotalwaysdetectthe
Cwstoccurrenceofareportforagiventrackintheprese,cc_fdisorderedmessages.We
noticethefollowingfailuremechanism.Supposewe haveatrackconsistingot scantimes
100,lI0,120.....150.Supposethattherateofdataarrivalishigh,causingmessage
order to be scrambled, and that reports for scantimes 110, 120. and 130 are received before
the report for 100. As implemented, the Radar Track object notices that it has ._ufficient
number of reports (in this case three), and it proceeds to compute a straight line through the
reports. When a report for scantime 140 or higher is received, it is tested against the
computed line to determine whether a line-check failure has occurred. Unfortunately, when
the report f6r scantirne 100 eventually arrives, it is discarded. It is discarded because the
trackhasalreadybeenconfi.,wmd,andconfu'medtracksonlygrowintheforwarddirect/on.

1989004628-037

FiINre 9 reveals why this errorcauses discrepancies between the Laminaprogram
andthereference serial.m'OSram:thehandle trackoperationin theLaminaprogramis given
a different set of reports compared to the reference program, |eading to a different best-t-xt
line being computed. To be certified as correct, we require thatthe reportscontained in a
cord'u'medRadarTrack Segment must be identical between the Lamina solution and the
reference solution.

The lesson here is that message disordering does occur, and that it does disrupt
computations that rely on strict ordering of track reporrts. In our experiments, the
incorrectnessoccurs infrequently. See Fibre 17. We believe thatwith minimal impacton
latency, this source of incorrectness can be eliminated without significant change to the
exp=rirnentalresults. o

' Correctness vs. Number of
Processors

,.o : _ .j =

0.9 t

0.$

0.7

o.s a Many-s/rcr_

I 0.S scemrioO.4 S_

o.3 .i

0.2 1
0.1

0.0 . . L , .--
1o 1oo

N-.,,bcr_ Pr_.,uws

Rl_n_17. C_ plotted,, a fimc_ionof thenumberofprocessorsforthe
0m-_mL_mdmmy-w=a_scm_os.

7.4. Varying the input data set
The results from using the one-aircraft scenario highlight the difficulties in

measuringperformanceof a real-time system where inputsarriveover an interval instead of
in a batch. Before experimem_on began, we hypothesized that the amount of achievable
speedup from additional processors is a function of the amount of parallel;.sminherent in
the inputdataset. The results relative to this hypothesis are inconclusive. Figure 18 plots
the confirmation latency against :he number of processors for two input scenarios, the
many-aizcra_scenario(30 tracks per scan) and the one-aizcr_ scenario(l u'ackper scan).

,4

"
1989004628-038

Confirmation Latency vs. Number of
Proc_ors for DL_.erentScenar'.,_ _4

I "-. "_ "''''''-. fLi_e_ speedup

scenario

,.o, I ino spee.du/

.001 l w ,
10 I00

NumberofPro¢_

Rgu_ IB. Confirmmonlatencym a fm_cdonofthenumberofprocessorsv_s
withd_ inputscenario.

"theoum.mLrcnd_scenariodisplaystwodistinctoperatingmodes)r_m whichprocessor

availability and waiting time determinesthe later.cy, and _oth_r m which data can be
processed with lit-dewaiting.

The one-aixcrah scenario displays interesting behavior: see Figure 18. While the
con.?m_ation latency decreases from the 1-processor to 4-processor case, just as in the
many-aircrah scenario, there is distinctly different behavior for 16, 36 and 64 processor cx
cases, where the average latency is consumt over this range. The key w understanding
phenomenon is to realize that inputs to the ,_y_t.emarriveperiodically. The many-aircra_
scenario generates approximately 800 reports comprising 70 radar track over a 200
rrdllisecondduration. In contrast, the one-aircra_ scenario generates approximately 1300
reports comprising 70 radartracks over an 8 second duration. Thus, although the volume
of reports is roughly equivalent (800 versus 1300), the duration over which they enter the
system differs by a factor of 40 (0.2 seconds versus 8 seconds). In terms of radar tracks
per second, which is a good measure of the object-creation workload, the many-aircraft
scenario produces dam at a rate of 350 tracks per second, while the one-aircraft scenario
produces data at a rate of _.8 tracks per second. This disparity causes the many-aircraft
scenario to keep the system busy, while the one-aircrah scenario meters a comparable
inflow of data over a much longer period, duringwhich the system may become quiescent
while it awaits addiuonal inputs.

The one-aircrah scenario displays two disdnct operating modes: one in which
processor availabilit_ ,ridwmting time determines the latency, and another in which data
can be processed with lit'dewaiting. For the l-processor and4-processor cases, the system
cannot process the input workload as fast as it enters, causin_ work to back up. This ;_
explains why the average confm'nation latency for the 70 or so radar tracks is nearly as long
as the scenario itself: most of the latency is consumed in tasks waiting to be executed. In

33

] 989004628-039

1
conu'ast, for the 16-processor, 36-processor and 64-processor cases, there are sufficient
...... •.:............. ..;1akin, ,_ _,ilr, uu uunrlc fn _ handlP.d 8_ fact _ i*_enter_ rhl, y!__.. _g

This ,xplains why the average latency bottoms out at l S milliseconds, and also tends to

expl_ the small variance.

lRecalling that this]_ardcularexperiment sought to test _h- hypothesis that the
amount of achievable speeoup from additional pro_essors is a func_ c of the amount of
parallelism inherent in the input data set,we see that these e.,_verirnentalmstdts cannot
confirm or disconf'um this hypothesis. The problem lies in the design of the one-aircrah

in_.utscenario. The reports should have been arranged to occur over the same 20millisecond durationas in the many-aircrah scenario, instead of over an 8 second duration.
Hadthat been done, the two scenarios would present to the system comparable workloads
in wrrnsof reportsper second, but would differ internally in the degree to wh/ch sub-pans
of the problemcan be solved concurrendy.

)

The distinction between the one-aircraft and many-aircrah scenarios can be M
describedin Figure 19. This graph is an abstract representation of Figure 12 presented

tearlier,md plots the input workload as a run,ion of time. The n_ny-aircrah scenariopre-
sents a high input workload over a very shen duration, while the one-ah'craft scenario
presentsthe same total workload spread out over a mu_ longer interval. If we imp. ".u_.the
dashed Linesto represent the workload threshold for which an n-processor system usame to
keepup withoutcausingwa/tingtimesto increase,weseethatthemany-aircraftscensrio
exceededtheability of thesystemto keepupevenatthe 100-processor".evel,but theone-
aircraftscenariocausedthesystemto mmsitionfrom not-able-to-keep-upto able-to-keep-
up somewherebetween4 and16 processors,A moreappropriateonc-al.,crahscenario,
then,isonethathasthesameinputworkloadprofileas thecurrentmany-aizcraftscenario.
Such a scenario would allow an experiment to be performed that fixes the inputworkload

profile, which our experiment inadvenendy varied, thereby contaminaung _ results.

!

J

m
i
)

1989004628-040

/ m_y_crah inputp wocklozlprofile

t" - I 10_ procl_$.or S

............................... 64 processors

Workload _ [able.to-keep-up thresholdInput

[work/secl iv 16 processors

................................ I processor

0.1

0 _ D

Scenario Time

Figure 19. Input workload versus time pmf'des shov,n _or two possible input
scen_os.

The woddosd threshold above which the work becomes incr_mgly backlogged varies
according to r_ number of processors

8. Discussion I
This section discusses how we achieved our experimentalresults using the concepts

developed in Section 4. Specifically, we focus on the relationships between problem
decomposition, speedup, andachievement of correctness.

8.1. Decomposition and correctness

In this section we analyze the problem solving knowledge embodied in the data
association module. We use thedependence graph program to represent inherent I
dependencies in the problem. This is conu'asted with the Lamina implementation to shed
light on the rationale behind our desigr.. ,_ecisions. The goal is to identify the general
principles that govern the transition from a dependence graph program to a nmnable
Lam'maimplement_on, i

t
|

b

mnms '.mMr_lsl,_._,tdsltmllusm..iLrlallfUll_.llr_.nL jIMI_.mU_m_jB_U_ARAL_jI%MI_M_ILm_EILI_I_N__II___ }d'ltk#'EXJ'_XZ'W'_mV_ll_l_lrUtm

1989004628-041

8.1.1. Assigningfunctionsto objects

We obtainedspeedupfrombothindependenthandlingoftracks,andpossiblyfrom
pipelJning within a track:,without the necessity to decom,r,ose r.heproblem into the small
functional pieces suggested in Figures 9 and 10. 0..,¢ might be tempted to believe that a
direct translation of the nodes and edges of the d_pendence graphs into Lamina objects and
methodsmightyieldthemaximalspeedup,bu,carefulstudyofthedependenciesinFigures
9 and10revealsthatthereisverylittleconc,arrencytobegained.

InFigure9,theem.;regraphisdependentonthearrivalofreportRi.Forinstance.
before a track is deci_-_ brc:.c.".,_,e top-level "handle track" graph requires the arrival of
reportsRI,R2....,RIast.The leflrnostaddnodeneedsRI,andtheremainderofthegraph
isdependentonthisnode.The .rid nodetotherightofthisonei_dependentonthearrival
ofR2,andtheremainingright-handsubgraphisdependentonthisnode.Thispattern
holdsfortheentiregraph,implyingthatcomputationmay onlyproceedasfaras
consecutivereportsbeginningwithRI havearrived.Thus,littleconcurrencymay be
gainedfromthe"handletrack"operation;inparticular,nopipeliningispossiblebecausethe
entiregraphreceivesonlyone setofreports,RI....,Rlast.FigureI0 issimilarly
dependenton sequentialprocessingofreports.We concludethatlumpingallofthe
functionsofFigures9andI0intoasmallnurn_rofobjectsdoesnotincuragreatexpense
inconcurrency.Giventheoverheadcostsassociatedwithmessagesendingandprocess
invocation, we speculate that one or two objects might yield the best possible design. In
fact, our design uses k+2 objects, where k is the number of times a track is declared
broken; k is typically fewer dmn three, giving us fewer than five objects for each "handle
u-ack"graph.

The dependence graph program provides several use_J insights regarding a good

problem decomposition. First, it justifies a decomposi_on that treats the "handle track"
function as primitive function, ratherthan a freer-grained decon.position. Second, it clearly
shows the independence between tracks, suggesting a re|atively painless problem
decomposition along these lines. Third, it shows the need to maintain consistent state
about which _rackshave been seen, and those which have not, suggesting a decomposition
according to track id number, which is the approachthat our Lamina program takes.

g.I.2. Why messageorder matters

A significantpartoftheLaminaconcurrentprogramimplementstechniquestoallow
aLaminaobjectreceivingmessagesfroma singlesendertohandlethemasiftheywere
receivedintheorderinwhichtheywereoriginallysent,withoutgapstheinthemessage
sequence.By doingthis,we incuraperformancecostbecausethereceiverwaitsforarrival
ofthenextappropriatemessage,ratherthanimmediatelyhandlingwhateverhasbeen
received.

The dependencegraphshelptojustifysuchcostsbecausethedependenciesimply
ordering.Indeed,inpreliminaryworkinadifferentfxamework,oneauthordiscoveredthat
when no explicitorderingconstraintswereimposedduringAirtracdataassociation
processing,and :i:heradditionalheuristicsnor knowledgewas used,incorrect
conclusionsresulteam caseswhentheinputdataratewashigh.Theincorrectconclusions
arosefromperformingtheline-fitcomputationonotherreportsdifferentfxomthefirstthree
consecutivereports.As such,theincorrectnessreflectedanintera.."tionbetweenmessage
disorderingarisinginCARE andtheparticularAirtracknowledge,catherthanthespecific
problemsolvingf,'amework.We believe,forinstance,thatsimilarincorrectconclusion--,
wouldariseinaLaminaprogramthatdidnotexplicitlyreorderreports.

36

1989004628-042

We emphasize that although the particular problem that we studied showed strong
correcmess benefits from imposing a strict ordering of reports, this should not be

, .L.....11,_,l.m¢ -_'ed or _quire m_¢¢age ordering. As the
dependence graphs make strikingly clear, the very.knowledge that we implement dictates
ordering. Another problem may not require orderk_g, but require a strict message tagging
protocol, for instance. As a general approach, we believe that the programmer should
repiesent the given problem in dependence graph form, preferably exp_citly, to expose the
required set of dependencies, and let the overall pattern of dependencies suggest the kinds
of decompositions and consistency requirements that might prove best.

8.1.3. Reports as values rather than objects

In the dependence graph program we repn-sent reports as values sent from node to
node. Similarly, in the Lamina implementation, we use a design where reports are values
sent from object to object. This works well because reports never change, enabling us to
treat reports_¢values. The cost of allowing an object to obtain the value of a report is a
fairly in,:x_nsive one-way message, where value-passing is viewed as a monotonic
transfer of'a predicate. This approach works because we know ahead of time which
objects need to read the value of a report, namely the objects that constitute the processing

Consider a second design where reports are represented as objects. In this scheme,
ofareportbeingavaluepassingthoughap ing p. . mgefor

operations to be applied to an object. Conceptually these arc ldenucal prootems, me omy
difference being the frame of reference. In the fast case, the datum moves through
processing stages requiring its value. In the case being considered here, the datum is
stationary, and it responds to requests to read its value. Thi_ is attractive when it is not
known in advance which objects will need to read its value. The penalty is an additional
message required to request the object's value, and the associ,.ted mes.qage receipt system
overhead.

A third design represents reports as objects, but replaces the read message in the
previous design with a request to perform a computation, and uses the object's reply
message to convey the result of the computation. By arranging a set of reports in a linear
pipelinc, we can allow the fast report to send the results of its computation to the second
report, and so forth. This design is the dual of the f'ast design because in this design we
send a sequence of computation messages through a pipeline of report objects, whereas in
the fast design we send a sequence of report va!ue messages through a pipeline of
computing objects. The designs differ in the gt,.,a.size of the problem decomposition;
since our problem has a small number of computations and a large number of reports, the
fast design yields a small number of computing objects with many reports passing
through, whereas the third design yields a large numoer of objects ,vith a small number of
computation messages passing through.

In our design, namely the first design discussed, we choose to represent reports as
values sent to successive objects in a processing pipeline because our problem
decomposition tells us in advance the objects in a pipeline. Using this design minimizes the
number of messages required to accomplish our task, and uses a larger gram-size compared
to its dual.

8. I. 4. Initialization

Our approach to initialization embodies the correctness conditions of Schlichting
and Schneider. Formally, we combine the use of monotonic predicates and predicate
transfer with acknowledgement.

37

Duringim_on of ourapptica6on,wecreatemanyobjects,typicallymanagers.
At run-time,theseobjectscommunicateamongthen'L_lves,whichrequiresthatwecollect
]'uii',_e,$,_Ur:_g C_-'-_-Or.,ar.d dis-m.bute Lh.._:o..a_._.e.rall c'reatinn _ complete. Specifically, the
Main Manager collects handles during the creation phase; in essence, each created object
sends a monotonic predicate to the Main Manager asserting the value of its handle. The
_.nvzdantcondkion may be expressed as .Follows:

Invariant(assertingown handle): "handle not sent" cr "my handle is X"

The Main Manager detects the fact that all creation is complete when each of the
predeterminednumber of objects respond; at this point, it distributes a table containing all
the h_dles to each object. !t waits un_ an acknowledgemem is received from each object
before initiating subsequent problem solving activity. This is imponam because ff _e
Main Manager begin_ too soon, some object might not have the handle to another object
that k needs to communicate with. In essence, the table of handles is asserted by a
pzedicatetransferwith acknowledgement.The invariamconditionisdescribedasfollows:

Inv_mt (dism'buting table of handles):

"tablenot sent"

or "problemsolving not _ ?'

or "allacknowledgements received"

l_n-mana_r [

initiate Input-simulator ownh_v_llenode
•creation

i

Figure20. CreatinsstaUcobjectsdurrasinitializadon.

Correcmess is crucial dur.ng initialization because a missingor incorrect handle, or
a missing or improperly created object causes problems at run-time. These problems can
compound themselves, causing performance or correctness degradation to propagate. By

38

] 989004628-044

using an initialization protocol that is guaranteed to be correct, these problems may be
avoided.

8.2. Other issues

$.2.1. Load balance

We define load balance as how evenly the actualcomputational load is disu'ibuted
over the processors in an array over time. Processing load is balanced when each
processor has a mix of processes resident on it that makes all the processors equally busy.
If a balanced processing cannot be achieved, the overall performance of a multiprocessor
may not reflect the actual numberof processors available to perform work due to poor load
balance. In our experimentatior we discoverea the critical importance of a good load
balancealgodd'u'n.

We encountered two kinds of problems. The first problem deals with where to
pin,., a newly created object. Since we want to allocate objects to processors so as to
evenly distribute the load, and because we want to avoid the message overhead associated
with a centralized object/processor assignment facility, we focused on the class of
algorithms that make object-to-processor assignments based on i cal information available
to the processor creating the object. The second problem deals with how objects share
limited processor resources. It rams out, for instance, that extremely computation-
intensive object- can severely impair the performance of all ,'her objects that share its
processor.

At one point in our experimentation, for instance, we observed a disappointing
value of unity for the $64/16 speedup factor, where we ins_.ad expected a factor of 4.
Moreover, we noticed an extremely uneven mapping of processes to processors: the
approximately 200 objects created during the course of problem solving ended up crowded
on only 14 of the 64 available processors! The culprit was the algorithm that decided
which neighboring processor should be chosen to place a new object. The algorithm
worked as follows. Beginning with the f'wstobject created by the system, a process-local
data structure, called a locale, is created that essentially records how many objects are
already located at every other processor in the processing array. When a new process is
spawned, the locale data structure is consulted to choose a processor that has the fewest
.:xisting processes. This scheme works well when a single object creates atl other objects
in the system; unfortunately in Airtracmany objects may create new objects.

Given the locale for any given process, when the process spawns a new process,
we arrangedfor the new process to inherit the locale of its parent. The idea is that we want
the new process to "know" as much as its parent did about where objectsarealready placed
in the array. This scheme fails because of the ace-like pattern of creations. Beginning with
the initial manager object at the root of the tree, any given object has inherited a locale
through all of its ancestors between itself and the root. Therefore the locale on a given
object will only know about other objects that were created by the ancestors of the object
before the locale was passed down to the next generation. Put another way, the locale on a
given object will not reflect creations that were performed a non-ancestor objects, or
creations that were performed on ancestor objects after the IL,,.alewas passed down. This
leads to extremely poor load balance.

The same problem occurs even if we define a single locale for each processor that is
shared over all processes residing on that processor. Unfortunately, that locale will only
know shout other objects that were created by objects residing on that processor. That is,

39

1989004628-045

the locale on a given processorwill not reflect crea_xonschatwere performed by objects that
reside on other processors.

In conu'ast,ideal load balance occurs when each object knows about all creations
fl_u have taken place in the past over the entire processing array. This ideal is extremely
di_cult to achieve. First, we want to avoid using a single globally-shared data structure.
Second, fmi:_ message sending time makes it impossible for many objects performing
simultaneousobjectcreation w accessandupdateaglobally-sharedstructureinaperfectly
consismntmanner.

We changed to a "random" load balance scheme which randomly selected a
processor in theprocessing arrayon which to cream a new object [Hailperin 87]. Running
the base case on a 64 processor arraywith approximately 200 objects, we managed to use
nearlyall the availableprocessors. Processorutilization improveddramatically.

Random processor allocation gave us good performance. In fact, we can argue
from theoretical grounds that a random scheme is desirable. First, we deliberately
consu'ain the technique to avoid using global informauon dmt would need to be shared.
This immediately rules out any cooperative schemes that rely on sharing of information.
Second, any scheme d_ attempts to use local informationavailable f_om a given numberof
close neighbors and performs allocations Iocv.lly faces the risk chat some small
neighborhood in the processing arraymight be heavily used, leaving enure sections of the
an'ayunderutilized. We are left cherefore, with the class of schemes that avoids use of
shared information but allows any processor to select any ofl_erprocessor _n the entire
array. Given these consu'aints, a random scheme fits the criteria quite nicely and in fact
performed reasonablywell.

Further experimentation revealed more problems. Manager objects have a
particularlyhighprocessingloadbecauseaverysmallnumber ofobjects(typically5 to9)
handlestheentireflowofdata.When anon-managerobjectshappenstoresideonthe
sameprocessorasamanagerobject,itsperformancesuffers.Forexample,aRadarTrack
objectisresponsible for creating a RadarTrack Segment object,andthe r_ne taken for the
create opera_ion affects the confirmation performance. Unfortunately, any RadarTrack
object ch_ happens to be situated on the same processor as a manager object (e.g. Input
Handler, Radar :rack Manager) gets very little processor time, and thereby contributes
sigrtificantcreationtimestotheoveralllamncymeasure.

Whereasintherandomschemetheprobability",hatagivenprocessorwillbechosen
I

foranew objec,._s_.fornprocessors,ourmodifmdrandomschemedoesthefollowing:

•Iftherearefewerstaticobjects(e.g.managers)thanprocessors,thenplacestatic
objects randomly,whichcanbethoughtof as s_nplinga random variable w/rhout
replacement. Place dynarnically created objects uniformly on the processors that
have no static objects, this time sampling with replacement.

• If there are as many or more static objects than processors, then place roughly
equal numbers of static objects on each processor in the array. Place dyr_amically
creamd objects uniformly over the entire array,sampling with replacement.

Tl_ scheme keeps the high processing load associated with manager objects from
degrading the performance of non-manager objects. This scheme performs well for our

40 i

1989004628-046

cases. We typically had from 5 to 9 static objects, approximately 150 dynamic objects, and
from I to I00 processors in the array. _

There are other considerations that might lead to further improvement in load
balance performance that we did not pursue. These are listed below: J• Account for the fact that not all static objects need a dedicated processor. (In our

scheme, we gave each static object an entire processor to itself whenever possi-

ble.) 1

* Account for the fact that a processor that hosts one or more static objects may
still be a desirable location for a dynatni_;allycreated object, although less so than
a processor without any static objects. (In our scheme, we assumed that any
processor with a static object should be avoided if possible.)

• Relocate objeas dynamically based on load information gathered at run-time.

J8.2.2. Conclusion retraction

This section explores some of the thinking behind our approach toward
consistency, which is to make conclusions (e.g. confmrmion, inactivation) only when they
we,¢ true. This is an extremely conservative stance, and possibly incurs a loss in /_
concurrencyand speedup. An alternative approachwhich might allow more concurrency is

lto make conclusions that are not provably correct: the programmer would allow such
conclusions to beasserted, reu-ac_i andreassertedfreely until a commitment regarding that
conclusion is made. Jefferson has explored this compuational paradigm, known as v/rtual
rime [Jefferson 85]. The invariant condition describing the trJth value of a conclusion P

under such a scheme is shown below:

Invariant: "no commi_nent made" or "P is true"

In essence, this invariant condition says that the program may assert that P is true,but there
is no guarantee that P is true unless it is accomp.aniedby a commitment to that fact. The
benefits of such an approach is that assemons may precede their corresponding
commitments by some _me interval. This interval may be used 1) by the user of the system
in some fashion, or 2) by the program itself to engage in furtherexploratory computation
that may be beneficial, perhaps m reducing computation later. In Airtrac-Lamina, we did
not investigate the benefits fi'omexploratory computation.

For the user of the system, he or she must decide how and when to act upon •
uncommitted assertions rendered by the system. On one hand, the user could view
assertions as u-uestatements even before a commitment is made, with _e anticipation that a
retracuon may be forthcoming. On the other hand, the user could vi¢.,' an assertion as true
only when accompanied by a commitment; this latter approach pl_.ces emphasis on the
commitment, since only the commiunent assures the truth of the conclusion. @

We decided against using the scheme outlined here. As a technique to allow
concurrent programs to engage in exploratory computations, there might be some merit if lthe power of such computations can be exploited. As a logical statement to the user of the
system, such an uncommiued conclusion is meaningless, since it may later be retracted. As
a probabilism: statement to the user of the system, a conclusion without commitment might
indicate some likelihoodthatthe conclusion is true. However, we bell, _,that a better way •
to handle probabilistic knowledge is to state it directly in the problem rather than in the

] 989004628-047

between domain knowledge and concurrentprogramming techniques steered us away from
the _proach of making assertions with the possibility of subsequent ten'action.

9. Summary

Lamina programming is shaped by _ target machin.e.archi_aure:.._L_ina is
designed to run on a distributed-memory muluprocessor consisting ot to to tuuu proces-
sors. Each processor is a computer with its own local memory and instruction stream.
There is no global shared memory; all processes communicate by message passing. This
target machine environment encourages a programming style that stresses performmce
gains through problem decomposition, which allows many processors to be brought to
bearon a problem. The key is to distributethe processing load over replicated objects, and
to increase throughput by building pipelined sequences of objects that handle stages of
problem solving.

For the programmer, lamina provides a concurrent object-oriented progrmm_ing
model. Programming within Lamina has fundamental differences with respect to con-
ventional systems:

• Concurrent processes may execute during both object creation and message
sending.

• The time requiredtocreateanobject is visible to the pro_.

• The time required to send a message is visible to the pro_.

• Messages may be received in a different order from v,Richthey were sent.

The many processes which must cooperate to accomplish the overall problem-
solving goal may execute simultaneously. The programmer-visible time delays are
significantwithintheLaminaparadigmbecauseoftheactivitiesthatmay goonduringthese
periods,andtheyexertastronginfluenceontheprogranuningstyle.

Thispaperdevelopedasetofconceptsthatallowsustounderstandandanalyzethe
lessonsthatwe learnedinthedesign,implementation,andexecutionofasimulatedreal-
ti_..eapplication.We co_ thefollowingexperimentalhypotheses:

•Performanceofourconcurrentprogramimproveswithadditionalprocessors,we
attainsignificant levels of speedup.

• Corn_cmessof our concurrent program can be maintained despite a high degree of
problem decomposition and highly overloaded inp_.tdata conditions.

An inappropriate design of our one-aircraft scenario precluded us fi'om confirming
or disconfirming the following experimental hypothesis:

• The amount of speedup we can achieve from additional processors is a function
of the amount of parallelism inherem in the input data set.

In building a s_,ulated real-time application in Lamina, we focused on improving
performance of a data-driven problem drawn from the dornam of real-time radar track
understanding, where the concern is throughput. We learned how to recognize the

42

1989004628-048

I

symptoms of throughputbottlenecks; our solution replicates objects and thereby improvesth,oushput.We lied ,oncepofyi r.s.and rey .i a ion,to:eco_ou
, . • _ ,,,_b.,,qt,,_, _L.a* v'v'_A1nl'21nP,"1 fl nlgrl level f11rc{11"ir_cKi-icsN _ &'[JI_IV]LI"II_

tO Ir)U-I, ilJJ_ fi.;Uil_,l.lll_llb_ _lttt.t _t.,v_.Jv*j_. ,, _, ,w - * * * _ *-,

conceptsofconsistencyandmutualexclusiontoanalyzeandimplementthetechniquesof
monotonicpredicateandpredicatetransferwithacknowledgements.We recognizedand
repairedloadbai_ce problems,discoveringintheprocessthata modifiedrandom lprocessorselectionschemedoesfairlywell.

The achievementoflinearspeedupup toI00tim-_sthatobtainableon a single

processor serves as an important validation of our concepts and techniques. We hope that
the concepts and techniques that we developed, as well as the lessons we learned through
our experiments, will be useful tO others working in the field of symbolic parallel
processing.

Aeknowledgea,tents i

We would like to thankall the members of the Advanced ArchitecutresProject,who
provided a supportive and stimulating research environment, especially to John Delaney
who provided valuable guidance and supportthroughoutthis project, andto Bruce Delagi,
Saym'i Nishimura, Nakul Saraiya, and Greg Byrd, who built and maintained the r'_•
Lamina/CARE system. Max Hailperin provided the load balance routines, and also
provided insightful crit.cisms. We would also like to thank the staff of the Symbolic
Systems Resources Group of the Knowledge Systems Laboratory for their excellent
support of our computing environment. Special gratitudegoes to Edward Feigenbaum for
his continued leadership and _upport of the Knowledge Systems Laboratory and the
Advanced Architectures Project.which made it possible to do the reported research. This _e
work was supported by DARPA Contract F30602-85-C-O0t2, NASA Ames Contract
NCC 2-220-S1, Boeing Contract W266875, and the Workstation Systems Engineering
groupof Digital EquipmentCorporation.

References
[Andrews 83] G.R. Andrews and Fred B. Schneider, Concepts and notations for

concurrent programming Computing Surveys I5 (1) (March 1983) 3-
43. •

m

[Arvind 83] Arvind, R.A. Isnnucci,Two fundamental issues in multiprocessing: _.
the data flow solution, Technical Report MIT/LCSfrM-241, 1LaboratoryforComputer Science,MassachusettsInstituteof
Technology,September1983.

[Brown 86]. H. Brown, E. Schoen, B. Delagi, An experiment in knowledge-based
signal understanding using parallel architectures, Report No. STAN-
CS-86-1136 (also numbered KSL 86-69), De ,artment of Computer
Science, Star.fordUniversity, 1986.

[Broy 85] M. Broy ed., Control Flow and Data Flow: Concepts of Distributed •
Programming (Springer.Verlag, Berlin, 1985).

l43

-- - ' _dl/__(/' ' ._,_'_,_%k_

1989004628-049

[Byrd87]. O. Byrd, R. Nakano, B. Delagi, A dynamic, cut-through
communications protocol with multicast, Technical Report KSL 87-
_14,Knowledge Systems Laboratory,Stanford University, 1987.

[Comafion 85] CORNAFION, Distributed Computing System.: Communication,
Cooperation, Consistency (Elsevier Science Publishers, Amsterdam.
1985).

[Delagi87a] B. Delagi, N. Saralya, S. Nishimura, G Byrd, An instrumented
architectural simulation system, Technical Repo_ KSL 86-36,
Knowledge Systems Laboratory,StartfordUniversity, January1987.

[Delagi 8To] B. Delagi and N. Saraiya,-Lamina: CARE applications interface,
Technical Report KSL 86-67, Working Paper, Knowledge Systems
Laboratory, Stanford University, May 1987.

[Delagi 87c] B. Delagi, private communication, July 1987.

[Dennis 85] J.B. Dennis, Data flow computation, Manfred Broy ed., Control
Flow and Data Flow: Concepts of Distributed Programming
(Spr;-_ _rerlag, Berlin. 1985) 345-54.

['Fiimea84] rilman and D.P. Friedman, Coordinated Computing: Tools and
Techniques for Distributed Sol, are (McGraw-Hill Book Co., New
York, 1984).

[Gajs_ 82] D.D. Gajski, D.A. Padua, D.J. Kuck, R.H. Kulm, A second opinion
on data flow machines and languages, IEEE Computer (February
1982) _8-69.

[Hailperin87] M. Hailpe_.o__,private communication, JHy 1987.

[Hendez,,on80] P. Henderson, Functional Programming (Prentice-Hall Intemaxional,
Englewood Cliffs, 1980).

[Jefferson 85] D.R. Jefferson, Virtual time, ACM Transactions on Programming
Languages and Systems 7 (3) (JHy 1985) 404-25.

[Kruskal 85] C.P. Kruskal, Performance bounds on parallel processors: an
imistic view, Manfred Broy ed., Control Flow and Data Flow:
cepts of Distributed Programming (Springer-Verlag, Berhn.

1985) 331-44.

[Kung 82] H.T. Kung, Why systolic architectures?, IEEE Computer. (lanuary
1982) 37-46.

[MacLenmm82] B.J. MacLennan, Values and objects in programming languages,
ACM 5igplan Notices I7 (12) (December 1982).

['Minami87] M. Miriam;. Experiments with a knowledge-b_ed system on a
muhiprocessor: preliminary Airtrac-Larnina ,,:luantitative results,
Working Paper, Technical Report KSL 87-35., Knowledge Systems
Laboratory.St,,fiord University, 1987.

44

1989004628-050

W
[-Nakano 87] R. Nakano, Experiments with a knowledge-based system on a I

multiprocessor: preliminary Airtrac-Lamina qualitative results,

Working Paper, Technical Report KSL 87-34, Knowledge Systems h

Laboratory, Stanford University, 1987.

[Nii 86a] P. Nil, Blackboard systems: the blackboard model of problem
solving and the evolution of blackboard architectures, A/Magazine 7
(2) (i986) 38-53.

['Nil 86b] p. Nil, Blackboard systems part two: blackboard application systems,
blackboard systems from a knowledge engineering perspective, AI
Magazine 7 (3) (1986) 82-106.

[Schlichting 83] R.D. Schlichting and F.B. Schneider, Using message passing for
distributed programming: proof rules and disciplines, Technical
Report TR 82-491, Department of Computer Science, Comell
Unive'sity, May 1983.

[Srnir.h 8!] R.G. Smith, A Framework for Distributed Problem Solving (UMI
Research Press, Ann Arbor, Michigan, 1981).

['ranenbaum 81] A. Tanenbaum, Computer Ner, vorks (Prentice Hall, Engleweod
Cliffs, New Jersey, 1981).

hl 85] W. Weihl and B. Liskov, Implementation of resilient atomic data
types, ACM Trans. on Programming Languages and Systems 7 (2)
(April 1985) "_4-69.

reinreb 80] D. Weinreb and D. Moon, Flavors: message passing in the Lisp
machine, Technical Report, Memo 602. Massachusetts Institu:e of
Technology. Artificial Intelligence Laboratory, 1980.

i
D
IT

I
D

1989004628-051

